698
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Revolutionizing the virulent protein Internalin a in Listeria monocytogenes and designing multi epitope-based vaccine via immunoinformatic approaches

, , , , , , , , & show all
Pages 1-11 | Received 05 Oct 2023, Accepted 12 Dec 2023, Published online: 04 Jan 2024

References

  • Akhtar, N., Joshi, A., Singh, J., & Kaushik, V. (2021). Design of a novel and potent multivalent epitope based human cytomegalovirus peptide vaccine: an immunoinformatics approach. Journal of Molecular Liquids, 335, 116586. https://doi.org/10.1016/j.molliq.2021.116586
  • Andreatta, M., Trolle, T., Yan, Z., Greenbaum, J. A., Peters, B., & Nielsen, M. (2018). An automated benchmarking platform for MHC class II binding prediction methods. Bioinformatics, 34(9), 1522–1528. https://doi.org/10.1093/bioinformatics/btx820
  • Berrang, M. E., Meinersmann, R. J., Frank, J. F., Smith, D. P., & Genzlinger, L. L. (2005). Distribution of Listeria monocytogenes subtypes within a poultry further processing plant. Journal of Food Protection, 68(5), 980–985. https://doi.org/10.4315/0362-028X-68.5.980
  • Chen, L., He, Y., Zhu, J., Zhao, S., Qi, S., Chen, X., Zhang, H., Ni, Z., Zhou, Y., Chen, G. & Liu, S. (2023). The roles and mechanism of m6A RNA methylation regulators in cancer immunity. Biomedicine & Pharmacotherapy, 163, 114839. https://doi.org/10.1016/j.biopha.2023.114839
  • Coelho, C., Brown, L., Maryam, M., Vij, R., Smith, D. F. Q., Burnet, M. C., Kyle, J. E., Heyman, H. M., Ramirez, J., Prados-Rosales, R., Lauvau, G., Nakayasu, E. S., Brady, N. R., Hamacher-Brady, A., Coppens, I., & Casadevall, A. (2019). Listeria monocytogenes virulence factors, including listeriolysin O, are secreted in biologically active extracellular vesicles. Journal of Biological Chemistry, 294(4), 1202–1217. https://doi.org/10.1074/jbc.RA118.006472
  • Currie, A., Farber, J. M., Nadon, C., Sharma, D., Whitfield, Y., Gaulin, C., Galanis, E., Bekal, S., Flint, J., Tschetter, L., Pagotto, F., Lee, B., Jamieson, F., Badiani, T., MacDonald, D., Ellis, A., May-Hadford, J., McCormick, R., Savelli, C., & Sierpinska, U. (2015). Multi-province listeriosis outbreak linked to contaminated deli meat consumed primarily in institutional settings, Canada, 2008. Foodborne Pathogens & Disease, 12(8), 645–652. https://doi.org/10.1089/fpd.2015.1939
  • Daniels, J. J., Autenrieth, I. B., & Goebel, W. (2000). Interaction of Listeria monocytogenes with the intestinal epithelium. FEMS Microbiology Letters, 190(2), 323–328. https://doi.org/10.1111/j.1574-6968.2000.tb09306.x
  • Dimitrov, I., Bangov, I., Flower, D. R., & Doytchinova, I. (2014). AllerTOP v. 2—a server for in silico prediction of allergens. Journal of Molecular Modeling, 20, 1–6. https://doi.org/10.1007/s00894-014-2278-5
  • Ding, Y., Shu, L., He, R., Chen, K., Deng, Y., Zhou, Z., Xiong, Y., & Deng, H. (2023). Listeria monocytogenes: A promising vector for tumor immunotherapy. Frontiers in Immunology, 14, 1278011. https://doi.org/10.3389/fimmu.2023.1278011
  • Doytchinova, I. A., & Flower, D. R. (2007). VaxiJen: A server for prediction of protective antigens, tumour antigens and subunit vaccines. BMC Bioinformatics, 8(1), 1–7. https://doi.org/10.1186/1471-2105-8-4
  • Du, Z., Su, H., Wang, W., Ye, L., Wei, H., Peng, Z., Anishchenko, I., Baker, D., & Yang, J. (2021). The trRosetta server for fast and accurate protein structure prediction. Nature Protocols, 16(12), 5634–5651. https://doi.org/10.1038/s41596-021-00628-9
  • Elsayed, M. E., El-Hamid MI, A., El-Gedawy, A., Bendary, M. M., ELTarabili, R. M., Alhomrani, M., Alamri, A. S., Alghamdi, S. A., Arnout, M., Binjawhar, D. N., Al-Sanea, M. M., & Abousaty, A. I. (2022, October 21). New insights into Listeria monocytogenes antimicrobial resistance, virulence attributes and their prospective correlation. Antibiotics (Basel), 11(10), 1447. https://doi.org/10.3390/antibiotics11101447
  • Gulzar, S., & Hussain, S. (2020). Bioinformatics study on structural protein of severe acute respiratory syndrome coronavirus 2 (SARS-COV-2) for better understanding the vaccine development. bioRxiv. 2020.2004. 2021.053199.
  • He, Z., Yue, C., Chen, X., Li, X., Zhang, L., Tan, S., Yi, X., Luo, G., & Zhou, Y. (2023). Integrative analysis identified CD38 as a key node that correlates highly with Immunophenotype, Chemoradiotherapy Resistance, and prognosis of head and neck Cancer. Journal of Cancer, 14(1), 72–87. https://doi.org/10.7150/jca.59730
  • Huang, H., Wu, N., Liang, Y., Peng, X., & Shu, J. (2022). SLNL: A novel method for gene selection and phenotype classification. International Journal of Intelligent Systems, 37(9), 6283–6304. https://doi.org/10.1002/int.22844
  • Ikram, A., Zaheer, T., Awan, F. M., Obaid, A., Naz, A., Hanif, R., Paracha, R. Z., Ali, A., Naveed, A. K., & Janjua, H. A. (2018). Exploring NS3/4A, NS5A and NS5B proteins to design conserved subunit multi-epitope vaccine against HCV utilizing immunoinformatics approaches. Scientific Reports, 8(1), 16107. https://doi.org/10.1038/s41598-018-34254-5
  • Ireton, K., Mortuza, R., Gyanwali, G. C., Gianfelice, A., & Hussain, M. (2021). Role of internalin proteins in the pathogenesis of Listeria monocytogenes. Molecular Microbiology, 116(6), 1407–1419. https://doi.org/10.1111/mmi.14836
  • Jackson, K. A., Gould, L. H., Hunter, J. C., Kucerova, Z., & Jackson, B. (2018). Listeriosis outbreaks associated with soft cheeses, United States, 1998–20141, emerg. Infectious Diseases, 24(6), 1116–1118. https://doi.org/10.3201/eid2406.171051
  • Jemmi, T., & Stephan, R. (2006). La Listeria monocytogenes, un agente patógeno transmitido por los alimentos que también sirve de indicador de higiene. Revue scientifique et technique, 25(2), 571–580. https://doi.org/10.20506/rst.25.2.1681
  • Ji, Q., Ma, J., Wang, S., & Liu, Q. (2022). Construction and immunological evaluation of live vector vaccine based on attenuated Listeria monocytogenes vector against Vibrio parahaemolyticus infection. Aquaculture, 560, 738560. https://doi.org/10.1016/j.aquaculture.2022.738560
  • Larijani, M. S., Sadat, S. M., Bolhassani, A., Pouriayevali, M. H., Bahramali, G., & Ramezani, A. (2018). In silico design and immunologic evaluation of HIV-1 p24-nef fusion protein to approach a therapeutic vaccine candidate. Current HIV Research, 16(5), 322–337. https://doi.org/10.2174/1570162X17666190102151717
  • Le, D. T., Brockstedt, D. G., Nir-Paz, R., Hampl, J., Mathur, S., Nemunaitis, J., Sterman, D. H., Hassan, R., Lutz, E., & Moyer, B. (2012). A live-attenuated Listeria vaccine (ANZ-100) and a live-attenuated Listeria vaccine expressing mesothelin (CRS-207) for advanced cancers: Phase I studies of safety and immune induction. Clinical Cancer Research, 18(3), 858–868. https://doi.org/10.1158/1078-0432.CCR-11-2121
  • Lecuit, M. (2020). Listeria monocytogenes, a model in infection biology. Cellular Microbiology, 22(4), e13186. https://doi.org/10.1111/cmi.13186
  • Mayer, R. L., Verbeke, R., Asselman, C., Aernout, I., Gul, A., Eggermont, D., Boucher, K., Thery, F., Maia, T. M., & Demol, H. (2022). Immunopeptidomics-based design of mRNA vaccine formulations against Listeria monocytogenes. Nature Communications, 13(1), 6075. https://doi.org/10.1038/s41467-022-33721-y
  • Naveed, M., Tehreem, S., Arshad, S., Bukhari, S. A., Shabbir, M. A., Essa, R., Ali, N., Zaib, S., Khan, A., & Al-Harrasi, A. (2021). Design of a novel multiple epitope-based vaccine: An immunoinformatics approach to combat SARS-CoV-2 strains. Journal of Infection and Public Health, 14(7), 938–946. https://doi.org/10.1016/j.jiph.2021.04.010
  • Naveed, M., Yaseen, A. R., Khalid, H., Ali, U., Rabaan, A. A., Garout, M., Halwani, M. A., Al Mutair, A., Alhumaid, S., & Al Alawi, Z. (2022). Execution and design of an anti HPIV-1 vaccine with multiple epitopes triggering innate and adaptive immune responses: An immunoinformatic approach. Vaccines, 10(6), 869. https://doi.org/10.3390/vaccines10060869
  • Radoshevich, L., & Cossart, P. (2018). Listeria monocytogenes: Towards a complete picture of its physiology and pathogenesis. Nature Reviews, Microbiology, 16(1), 32–46. https://doi.org/10.1038/nrmicro.2017.126
  • Ragone, C., Manolio, C., Cavalluzzo, B., Mauriello, A., Tornesello, M. L., Buonaguro, F. M., Castiglione, F., Vitagliano, L., Iaccarino, E., Ruvo, M., Tagliamonte, M., & Buonaguro, L. (2021). Identification and validation of viral antigens sharing sequence and structural homology with tumor-associated antigens (TAAs). The Journal for ImmunoTherapy of Cancer, 9(5), e002694. https://doi.org/10.1136/jitc-2021-002694
  • Rahman, S., & Das, A. K. (2022). A subtractive proteomics and immunoinformatics approach towards designing a potential multi-epitope vaccine against pathogenic Listeriamonocytogenes. Microbial Pathogenesis, 172, 105782. https://doi.org/10.1016/j.micpath.2022.105782
  • Rapin, N., Lund, O., Bernaschi, M., & Castiglione, F. (2010). Computational immunology meets bioinformatics: The use of prediction tools for molecular binding in the simulation of the immune system. PloS one, 5(4), e9862. https://doi.org/10.1371/journal.pone.0009862
  • Ras-Carmona, A., Lehmann, A. A., Lehmann, P. V., & Reche, P. A. (2022). Prediction of B cell epitopes in proteins using a novel sequence similarity-based method. Scientific Reports, 12(1), 13739. https://doi.org/10.1038/s41598-022-18021-1
  • Schlech, W. F., III. (2019). Epidemiology and clinical manifestations of Listeria monocytogenes infection. Microbiology Spectrum, 7(3). https://doi.org/10.1128/microbiolspec.GPP3-0014-2018
  • Shahabi, V., Reyes-Reyes, M., Wallecha, A., Rivera, S., Paterson, Y., & Maciag, P. (2008). Development of a Listeria monocytogenes based vaccine against prostate cancer. Cancer Immunology Immunotherapy, 57, 1301–1313. https://doi.org/10.1007/s00262-008-0463-z
  • Shen, W., Pei, P., Zhang, C., Li, J., Han, X., Liu, T., Shi, X., Su, Z., Han, G., Hu, L & Yang, K. (2023). A polymeric hydrogel to eliminate programmed death-ligand 1 for enhanced tumor radio-immunotherapy. Agricultural Science & Technology Nano, 17(23), 23998–24011. https://doi.org/10.1021/acsnano.3c08875
  • Smith, A. M., Tau, N. P., Smouse, S. L., Allam, M., Ismail, A., Ramalwa, N. R., Disenyeng, B., Ngomane, M., & Thomas, J. (2019). Outbreak of Listeria monocytogenes in South Africa, 2017–2018: Laboratory activities and experiences associated with whole-Genome Sequencing analysis of Isolates. Foodborne Pathogens & Disease, 16(7), 524–530. https://doi.org/10.1089/fpd.2018.2586
  • Stolfi, P., Castiglione, F., Mastrostefano, E., DiBiase, I., DiBiase, S., Palmieri, G., & Prisco, A. (2022). In-silico evaluation of adenoviral COVID-19 vaccination protocols: Assessment of immunological memory up to 6 months after the third dose. Frontiers in Immunology, 13, 998262. https://doi.org/10.3389/fimmu.2022.998262
  • Thomas, J., Govender, N., McCarthy, K. M., Erasmus, L. K., Doyle, T. J., Allam, M., Ismail, A., Ramalwa, N., Sekwadi, P., Ntshoe, G., Shonhiwa, A., Essel, V., Tau, N., Smouse, S., Ngomane, H. M., Disenyeng, B., Page, N. A., Govender, N. P. … Smith, A. M. (2020). Outbreak of listeriosis in South Africa associated with processed meat. The New England Journal of Medicine, 382(7), 632–643. https://doi.org/10.1056/NEJMoa1907462
  • Trevizani, R., Yan, Z., Greenbaum, J. A., Sette, A., Nielsen, M., & Peters, B. (2022). A comprehensive analysis of the IEDB MHC class-I automated benchmark. Briefings in Bioinformatics, 23(4), bbac259. https://doi.org/10.1093/bib/bbac259
  • World Health Organization. Listeriosis. Retrieved February 20, 2018, from https://www.who.int/news-room/fact-sheets/detail/listeriosis.
  • Yan, Y., Tao, H., He, J., & Huang, S.-Y. (2020). The HDOCK server for integrated protein–protein docking. Nature Protocols, 15(5), 1829–1852. https://doi.org/10.1038/s41596-020-0312-x
  • Zhang, Y., Lian, B., Yang, S., Huang, X., Zhou, Y., & Cao, L. (2023). Metabotropic glutamate receptor 5-related autoimmune encephalitis with reversible splenial lesion syndrome following SARS-CoV-2 vaccination. Medicine, 102(7), e32971. https://doi.org/10.1097/MD.0000000000032971
  • Zhang, Q., Wang, Y., Bai, R. T., Lian, B. R., Zhang, Y., & Cao, L. M. (2023). X-linked Charcot-Marie-tooth disease after SARS-CoV-2 vaccination mimicked stroke like episodes. A case report. World Journal of Clinical Cases, 11(2), 464–471. https://doi.org/10.12998/wjcc.v11.i2.464
  • Zhao, Q., Wang, Y., Zhu, Z., Zhao, Q., Zhu, L. & Jiang, L. (2023). Efficient reduction of β-lactoglobulin allergenicity in milk using clostridium tyrobutyricum Z816. Food Science and Human Wellness, 12(3), 809–816. https://doi.org/10.1016/j.fshw.2022.09.017
  • Zhou, J., Negi, A., Mirallai, S. I., Warta, R., Herold-Mende, C., Carty, M. P., Ye, X.-S., & Murphy, P. V. (2019). N-Alkyl-1, 5-dideoxy-1, 5-imino-l-fucitols as fucosidase inhibitors: Synthesis, molecular modelling and activity against cancer cell lines. Bioorganic Chemistry, 84, 418–433. https://doi.org/10.1016/j.bioorg.2018.12.003
  • Zhu, Y., Huang, R., Wu, Z., Song, S., Cheng, L. & Zhu, R. (2021). Deep learning-based predictive identification of neural stem cell differentiation. Nature Communications, 12(1), 2614. https://doi.org/10.1038/s41467-021-22758-0