801
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Potential health benefits of combined extracts from germinated brown jasmine rice (Oryza sativa L.), Moringa oleifera leaves, and Cordyceps militaris

ORCID Icon & ORCID Icon
Pages 1-11 | Received 11 Aug 2023, Accepted 17 Dec 2023, Published online: 04 Jan 2024

References

  • Aalim, H., & Luo, Z. (2021). Insight into rice (Oryza sativa L.) cooking: Phenolic composition, inhibition of α-amylase and α-glucosidase, and starch physicochemical and functional properties. Food Bioscience, 40, 100917. https://doi.org/10.1016/j.fbio.2021.100917
  • Agustin, A. T., Safitri, A., & Fatchiyah, F. (2021). Java red rice (Oryza sativa L.) nutritional value and anthocyanin profiles and its potential role as antioxidant and anti-diabetic. Indonesian Journal of Chemistry, 21(4), 968–978. https://doi.org/10.22146/ijc.64509
  • Anand David, A. V., Arulmoli, R., & Parasuraman, S. (2016). Overviews of biological importance of quercetin: A bioactive flavonoid. Pharmacognosy Reviews, 10(20), 84–89. https://doi.org/10.4103/0973-7847.194044
  • Anliza, S., & Rachmawati, N. (2021). Cytotoxic activity of ethanol extract in Namnam leaves (Cynometra cauliflora l.) to Hela cell. Walisongo Journal of Chemistry, 4(2), 107–112. https://doi.org/10.21580/wjc.v4i2.7999
  • Awang, M. A., Daud, N. N. N. N. M., Ismail, N. I. M., Cheng, P. G., Ismail, M. F., & Ramaiya, S. D. (2021). Antioxidant and cytotoxicity activity of Cordyceps militaris extracts against human colorectal cancer cell line. Journal of Applied Pharmaceutical Science, 11(7), 105–109. https://doi.org/10.7324/JAPS.2021.110711
  • Bilska, K., Stuper-Szablewska, K., Kulik, T., Buśko, M., Załuski, D., & Perkowski, J. (2018). Resistance-related L-pyroglutamic acid affects the biosynthesis of trichothecenes and phenylpropanoids by F. graminearum sensu stricto. Toxins (Basel), 10(12), 492. https://doi.org/10.3390/toxins10120492
  • Chen, L., Lin, X., Yao, M., & Teng, H. (2020). Self-nanoemulsions loaded with dihydromyricetin: Insights to their formulation stability. Food Hydrocolloids, 108, 105888. https://doi.org/10.1016/j.foodhyd.2020.105888
  • Chmiel, T., Saputro, I. E., Kusznierewicz, B., & Bartoszek, A. (2018). The impact of cooking method on the phenolic composition, total antioxidant activity and starch digestibility of rice (Oryza sativa L.). Journal of Food Processing and Preservation, 42(1), e13383. https://doi.org/10.1111/jfpp.13383
  • Cho, D. H., & Lim, S. T. (2016). Germinated brown rice and its bio-functional compounds. Food Chemistry, 196, 259–271. https://doi.org/10.1016/j.foodchem.2015.09.025
  • Coussens, L. M., & Werb, Z. (2002). Inflammation and cancer. Nature, 420(6917), 860–867. https://doi.org/10.1038/nature01322
  • Della Valle, A., Dimmito, M. P., Zengin, G., Pieretti, S., Mollica, A., Locatelli, M., Cichelli, A., Novellino, E., Ak, G., Yerlikaya, S., Baloglu, M. C., Celik Altunoglu, Y., & Stefanucci, A. (2020). Exploring the nutraceutical potential of dried pepper Capsicum annuum L. on market from Altino in Abruzzo region. Antioxidants (Basel), 9(5), 400. https://doi.org/10.3390/antiox9050400
  • Fares, M., Abedi-Valugerdi, M., Hassan, M., & Potácová, Z. (2015). DNA damage, lysosomal degradation and Bcl-xL deamidation in doxycycline- and minocycline-induced cell death in the K562 leukemic cell line. Biochemical and Biophysical Research Communications, 463(3), 268–274. https://doi.org/10.1016/j.bbrc.2015.05.043
  • Gang, F. L., Zhu, F., Li, X. T., Wei, J. L., Wu, W. J., & Zhang, J. W. (2018). Synthesis and bioactivities evaluation of L-pyroglutamic acid analogues from natural product lead. Bioorganic and Medicinal Chemistry, 26(16), 4644–4649. https://doi.org/10.1016/j.bmc.2018.07.041
  • Gopalakrishnan, L., Doriya, K., & Kumar, D. S. (2016). Moringa oleifera: A review on nutritive importance and its medicinal application. Food Science and Human Wellness, 5(2), 49–56. https://doi.org/10.1016/j.fshw.2016.04.001
  • Gören, M. Z., & Onat, F. (2007). Ethosuximide: From bench to bedside. CNS Drug Reviews, 13(2), 224–229. https://doi.org/10.1111/j.1527-3458.2007.00009.x
  • Hakobyan, N. Z., Hovasyan, Z. A., Hovakimyan, S. S., Melkonyan, A. G., Pagutyan, N. A., Panosyan, G. A., & Gevorgyan, G. A. (2020). Synthesis and antioxidant activity of N-aminomethyl derivatives of ethosuximide and pufemide anticonvulsants. Russian Journal of General Chemistry, 90(3), 385–389. https://doi.org/10.1134/S1070363220030093
  • Hansakul, P., Srisawat, U., Itharat, A., & Lerdvuthisopon, N. (2011). Phenolic and flavonoid contents of Thai rice extracts and their correlation with antioxidant activities using chemical and cell assays. Journal of the Medical Association of Thailand, 94(Suppl 7), S122–S130.
  • Hu, C., Zawistowski, J., Ling, W., & Kitts, D. D. (2003). Black rice (Oryza sativa L. indica) pigmented fraction suppresses both reactive oxygen species and nitric oxide in chemical and biological model systems. Journal of Agricultural and Food Chemistry, 51(18), 5271–5277. https://doi.org/10.1021/jf034466n
  • Hyun, Y. J., Kim, J. G., Jung, S. K., & Kim, J. Y. (2021). Fermented rice germ extract ameliorates abnormal glucose metabolism via antioxidant activity in type 2 diabetes mellitus mice. Applied Sciences, 11(7), 3091. https://doi.org/10.3390/app11073091
  • Jones, D. A. (2009). Rosacea, reactive oxygen species, and azelaic acid. The Journal of Clinical and Aesthetic Dermatology, 2(1), 26–30.
  • Kang, D. H., Kang, O. H., Li, Z., Mun, S. H., Seo, Y. S., Kong, R., Tian, Z., Liu, X., & Kwon, D. Y. (2016). Antiinflammatory effects of Ciwujianoside C3, extracted from the leaves of Acanthopanax henryi (Oliv.) Harms, on LPS-stimulated RAW 264.7 cells. Molecular Medicine Reports, 14(4), 3749–3758. https://doi.org/10.3892/mmr.2016.5710
  • Kanwar, J. R., Kanwar, R. K., Burrow, H., & Baratchi, S. (2009). Recent advances on the roles of NO in cancer and chronic inflammatory disorders. Current Medicinal Chemistry, 16(19), 2373–2394. https://doi.org/10.2174/092986709788682155
  • Kapcum, C., & Uriyapongson, J. (2018). Effects of storage conditions on phytochemical and stability of purple corn cob extract powder. Food Science & Technology, 38(Suppl 1), 301–305. https://doi.org/10.1590/1678-457X.23217
  • Karray, A., Alonazi, M., Jallouli, R., Alanazi, H., & Ben Bacha, A. (2022). A proteinaceous alpha-amylase inhibitor from Moringa oleifera leaf extract: Purification, characterization, and insecticide effects against C. maculates insect larvae. Molecules, 27(13), 4222. https://doi.org/10.3390/molecules27134222
  • Kaur, M., Asthir, B., & Mahajan, G. (2017). Variation in antioxidants, bioactive compounds and antioxidant capacity in germinated and ungerminated grains of ten rice cultivars. Rice Science, 24(6), 349–359. https://doi.org/10.1016/j.rsci.2017.08.002
  • Kim, D. J., Kang, Y. H., Kim, K. K., Kim, T. W., Park, J. B., & Choe, M. (2017). Increased glucose metabolism and alpha-glucosidase inhibition in Cordyceps militaris water extract-treated HepG2 cells. Nutrition Research and Practice, 11(3), 180–189. https://doi.org/10.4162/nrp.2017.11.3.180
  • Kou, X., & Chen, N. (2012). Pharmacological potential of ampelopsin in rattan tea. Food Science and Human Wellness, 1(1), 14–18. https://doi.org/10.1016/j.fshw.2012.08.001
  • Kusano, R., Ogawa, S., Matsuo, Y., Tanaka, T., Yazaki, Y., & Kouno, I. (2011). α-amylase and lipase inhibitory activity and structural characterization of acacia bark proanthocyanidins. Journal of Natural Products, 74(2), 119–128. https://doi.org/10.1021/np100372t
  • Lee, H. H., Lee, S., Lee, K., Shin, Y. S., Kang, H., & Cho, H. (2015). Anti-cancer effect of Cordyceps militaris in human colorectal carcinoma RKO cells via cell cycle arrest and mitochondrial apoptosis. Daru: Journal of Faculty of Pharmacy, Tehran University of Medical Sciences, 23(1), 35. https://doi.org/10.1186/s40199-015-0117-6
  • Limtrakul, P., Yodkeeree, S., Pitchakarn, P., & Punfa, W. (2016). Anti-inflammatory effects of proanthocyanidin-rich red rice extract via suppression of MAPK, AP-1 and NF-κB pathways in raw 264.7 macrophages. Nutrition Research and Practice, 10(3), 251–258. https://doi.org/10.4162/nrp.2016.10.3.251
  • Magaji, U. F., Sacan, O., & Yanardag, R. (2020). Alpha amylase, alpha glucosidase and glycation inhibitory activity of Moringa oleifera extracts. South African Journal of Botany, 128, 225–230. https://doi.org/10.1016/j.sajb.2019.11.024
  • Meyer, B. N., Ferrigni, N. R., Putnam, J. E., Jacobsen, L. B., Nichols, D. E., & McLaughlin, J. L. (1982). Brine shrimp: A convenient general bioassay for active plant constituents. Planta Medica, 45(5), 31–34. https://doi.org/10.1055/s-2007-971236
  • Mohammed, A. B. A., Yagi, S., Tzanova, T., Schohn, H., Abdelgadir, H., Stefanucci, A., Mollica, A., Mahomoodally, M. F., Adlan, T. A., & Zengin, G. (2020). Chemical profile, antiproliferative, antioxidant and enzyme inhibition activities of Ocimum basilicum L. and Pulicaria undulata (L.) C.A. Mey. grown in Sudan. South African Journal of Botany, 132, 403–409. https://doi.org/10.1016/j.sajb.2020.06.006
  • Morimitsu, Y., Hayashi, K., Nakagawa, Y., Horio, F., Uchida, K., & Osawa, T. (2000). Antiplatelet and anticancer isothiocyanates in Japanese domestic horseradish, wasabi. BioFactors, 13(1–4), 271–276. https://doi.org/10.1002/biof.5520130141
  • Mumtaz, M. Z., Kausar, F., Hassan, M., Javaid, S., & Malik, A. (2021). Anticancer activities of phenolic compounds from Moringa oleifera leaves: In vitro and in silico mechanistic study. Beni-Suef University Journal of Basic and Applied Sciences, 10(1), 12. https://doi.org/10.1186/s43088-021-00101-2
  • Mundkar, M., Bijalwan, A., Soni, D., & Kumar, P. (2022). Neuroprotective potential of Moringa oleifera mediated by NF-kB/nrf2/HO-1 signaling pathway: A review. Journal of Food Biochemistry, 46(12), e14451. https://doi.org/10.1111/jfbc.14451
  • Nallathamby, N., Guan-Serm, L., Vidyadaran, S., Abd Malek, S. N., Raman, J., & Sabaratnam, V. (2015). Ergosterol of Cordyceps militaris attenuates LPS induced inflammation in BV2 microglia cells. Natural Product Communications, 10(6), 885–886. https://doi.org/10.1177/1934578X1501000623
  • Nam, T. G., Lim, T. G., Lee, B. H., Lim, S., Kang, H., Eom, S. H., Yoo, M., Jang, H. W., & Kim, D. O. (2017). Comparison of anti-inflammatory effects of flavonoid-rich common and tartary buckwheat sprout extracts in lipopolysaccharide-stimulated RAW 264.7 and peritoneal macrophages. Oxidative Medicine and Cellular Longevity, 2017, 9658030. https://doi.org/10.1155/2017/9658030
  • Ogundipe, A., Adetuyi, B., Iheagwam, F., Adefoyeke, K., Olugbuyiro, J., Ogunlana, O., & Ogunlana, O. (2022). In vitro experimental assessment of ethanolic extract of Moringa oleifera leaves as an α-amylase and α-lipase inhibitor. Biochemistry Research International, 2022, 4613109. https://doi.org/10.1155/2022/4613109
  • Piazza, S., Colombo, F., Bani, C., Fumagalli, M., Vincentini, O., Sangiovanni, E., Martinelli, G., Biella, S., Silano, M., Restani, P., Dell’agli, M., & DiLorenzo, C. (2022). Evaluation of the potential anti-inflammatory activity of black rice in the framework of celiac disease. Foods, 12(1), 63. https://doi.org/10.3390/foods12010063
  • Quan, N. V., Iuchi, Y., Anh, L. H., Hasan, M., & Xuan, T. D. (2022). Simple isolation of cordycepin from Cordyceps militaris by dual-normal phase column chromatography and its potential for making kombucha functional products. Separations, 9(10), 290. https://doi.org/10.3390/separations9100290
  • Quan, N. V., Xuan, T. D., Tran, H. D., Ahmad, A., Khanh, T. D., & Dat, T. D. (2019). Contribution of momilactones A and B to diabetes inhibitory potential of rice bran: Evidence from in vitro assays. Saudi Pharmaceutical Journal, 27(5), 643–649. https://doi.org/10.1016/j.jsps.2019.03.006
  • Qu, S. L., Li, S. S., Li, D., & Zhao, P. J. (2022). Metabolites and their bioactivities from the genus Cordyceps. Microorganisms, 10(8), 1489. https://doi.org/10.3390/microorganisms10081489
  • Ramli, N. S., & Zin, N. H. M. (2018). Alpha-amylase inhibitory activity of inhibitor proteins in different types of commercial rice. Science Heritage Journal (GWS), 2(2), 27–29. https://doi.org/10.26480/gws.02.2018.27.29
  • Ren, C., Hong, B., Zheng, X., Wang, L., Zhang, Y., Guan, L., Yao, X., Huang, W., Zhou, Y., & Lu, S. (2020). Improvement of germinated brown rice quality with autoclaving treatment. Food Science and Nutrition, 8(3), 1709–1717. https://doi.org/10.1002/fsn3.1459
  • Rujanapun, N., Jaidee, W., Duangyod, T., Phuneerub, P., Paojumroom, N., Maneerat, T., Pringpuangkeo, C., Ramli, S., & Charoensup, R. (2022). Special Thai oolong tea: Chemical profile and in vitro antidiabetic activities. Frontiers in Pharmacology, 13, 797032. https://doi.org/10.3389/fphar.2022.797032
  • Santos, A. F., Argolo, A. C., Paiva, P. M., & Coelho, L. C. (2012). Antioxidant activity of Moringa oleifera tissue extracts. Phytotherapy Research, 26(9), 1366–1370. https://doi.org/10.1002/ptr.4591
  • Sarnthima, R., Khammuang, S., & Joompang, A. (2020). Glutinous rice (Oryza sativa L.) protein extract with potent α-amylase inhibitory activity. Journal of Food Science and Technology, 57(8), 3157–3163. https://doi.org/10.1007/s13197-020-04560-w
  • Segwatibe, M. K., Cosa, S., & Bassey, K. (2023). Antioxidant and antimicrobial evaluations of Moringa oleifera Lam leaves extract and isolated compounds. Molecules, 28(2), 899. https://doi.org/10.3390/molecules28020899
  • Seneviratne, K. P., Anjali, N. V. P., Senanayake, C. M., Jayathilaka, N., & Seneviratne, K. N. (2022). Ethanolic extract of rice bran: A thermally stable preservative for edible oils and cake. Food Production, Processing and Nutrition, 4(1), 14. https://doi.org/10.1186/s43014-022-00094-0
  • Shimamura, T., Sumikura, Y., Yamazaki, T., Tada, A., Kashiwagi, T., Ishikawa, H., Matsui, T., Sugimoto, N., Akiyama, H., & Ukeda, H. (2014). Applicability of the DPPH assay for evaluating the antioxidant capacity of food additives-inter-laboratory evaluation study. Analytical Sciences, 30(7), 717–721. https://doi.org/10.2116/analsci.30.717
  • Siddhuraju, P., & Becker, K. (2003). Antioxidant properties of various solvent extracts of total phenolic constituents from three different agroclimatic origins of drumstick tree (Moringa oleifera Lam.) leaves. Journal of Agricultural and Food Chemistry, 51(8), 2144–2155. https://doi.org/10.1021/jf020444+
  • Sissoko, L., Diarra, N., Nientao, I., Stuart, B., Togola, A., Diallo, D., & Willcox, M. (2020). Moringa oleifera leaf powder for type 2 diabetes: A pilot clinical trial. African Journal of Traditional, Complementary and Alternative Medicines, 17(2), 29–36. https://doi.org/10.21010/ajtcam.v17i2.3
  • Spaggiari, C., Annunziato, G., Spadini, C., Montanaro, S. L., Iannarelli, M., Cabassi, C. S., & Costantino, G. (2023). Extraction and quantification of azelaic acid from different wheat samples (Triticum durum Desf.) and evaluation of their antimicrobial and antioxidant activities. Molecules, 28(5), 2134. https://doi.org/10.3390/molecules28052134
  • Sreelatha, S., & Padma, P. R. (2009). Antioxidant activity and total phenolic content of Moringa oleifera leaves in two stages of maturity. Plant Foods for Human Nutrition, 64(4), 303–311. https://doi.org/10.1007/s11130-009-0141-0
  • Streeper, R. T., Louden, C., & Izbicka, E. (2020). Oral azelaic acid ester decreases markers of insulin resistance in overweight human male subjects. In Vivo, 34(3), 1173–1186. https://doi.org/10.21873/invivo.11890
  • Striegel, L., Kang, B., Pilkenton, S. J., Rychlik, M., & Apostolidis, E. (2015). Effect of black tea and black tea pomace polyphenols on α-glucosidase and α-amylase inhibition, relevant to type 2 diabetes prevention. Frontiers in Nutrition, 2, 3. https://doi.org/10.3389/fnut.2015.00003
  • Summpunn, P., Panpipat, W., Manurakchinakorn, S., Bhoopong, P., Ling-Zhi Cheong, L. Z., & Chaijan, M. (2022). Comparative analysis of antioxidant compounds and antioxidative properties of Thai indigenous rice: Effects of rice variety and processing condition. Molecules, 27(16), 5180. https://doi.org/10.3390/molecules27165180
  • Suryanti, V., Riyatun., Suharyana, S., Sutarno, & Saputra, O. A. (2020). Antioxidant activity and compound constituents of gamma-irradiated black rice (Oryza sativa L.) var. Cempo ireng indigenous of Indonesia. Biodiversitas Journal of Biological Diversity, 21(9), 4205–4212. https://doi.org/10.13057/biodiv/d210935
  • Tang, Y., Choi, E. J., Han, W. C., Oh, M., Kim, J., Hwang, J. Y., Park, P. J., Moon, S. H., Kim, Y. S., & Kim, E. K. (2017). Moringa oleifera from Cambodia ameliorates oxidative stress, hyperglycemia, and kidney dysfunction in type 2 diabetic mice. Journal of Medicinal Food, 20(5), 502–510. https://doi.org/10.1089/jmf.2016.3792
  • Thurber, M. D., & Fahey, J. W. (2009). Adoption of Moringa oleifera to combat under-nutrition viewed through the lens of the “diffusion of innovations” theory. Ecology of Food and Nutrition, 48(3), 212–225. https://doi.org/10.1080/03670240902794598
  • Tima, S., Tapingkae, T., To-Anun, C., Noireung, P., Intaparn, P., Chaiyana, W., Sirithunyalug, J., Panyajai, P., Viriyaadhammaa, N., Nirachonkul, W., Rueankham, L., Aung, W. L., Chueahongthong, F., Chiampanichayakul, S., & Anuchapreeda, S. (2022). Antileukaemic cell proliferation and cytotoxic activity of edible golden Cordyceps (Cordyceps militaris) extracts. Evidence-Based Complementary and Alternative Medicine, 2022, 5347718. https://doi.org/10.1155/2022/5347718
  • Tripathi, A. K., Ray, A. K., & Mishra, S. K. (2022). Molecular and pharmacological aspects of piperine as a potential molecule for disease prevention and management: Evidence from clinical trials. Beni-Suef University Journal of Basic and Applied Sciences, 11(1), 16. https://doi.org/10.1186/s43088-022-00196-1
  • Tyagi, A., Shabbir, U., Chen, X., Chelliah, R., Elahi, F., Ham, H. J., & Oh, D. H. (2022). Phytochemical profiling and cellular antioxidant efficacy of different rice varieties in colorectal adenocarcinoma cells exposed to oxidative stress. In U. Sarker (Ed.), PLoS One, 17, e0269403. https://doi.org/10.1371/journal.pone.0269403
  • Upadhyay, A., & Karn, S. K. (2018). Brown rice: Nutritional composition and health benefits. Journal of Food Science and Technology Nepal, 10, 47–52. https://doi.org/10.3126/jfstn.v10i0.19711
  • Walter, M., & Marchesan, E. (2011). Phenolic compounds and antioxidant activity of rice. Brazilian Archives of Biology and Technology, 54(2), 371–377. https://doi.org/10.1590/S1516-89132011000200020
  • Wan, C. P., Wei, Y. G., Li, X. X., Zhang, L. J., Yang, R., & Bao, Z. R. (2017). Piperine regulates glucose metabolism disorder in HepG2 cells of insulin resistance models via targeting upstream target of AMPK signaling pathway. Zhongguo Zhong Yao Za Zhi, 42(3), 542–547. https://doi.org/10.19540/j.cnki.cjcmm.20161222.059
  • Wattayagorn, V., Kongsema, M., Tadakittisarn, S., & Chumnanpuen, P. (2022). Riceberry rice bran protein hydrolyzed fractions induced apoptosis, senescence and G1/S cell cycle arrest in human colon cancer cell lines. Applied Sciences, 12(14), 6917. https://doi.org/10.3390/app12146917
  • Wisetkomolmat, J., Arjin, C., Hongsibsong, S., Ruksiriwanich, W., Niwat, C., Tiyayon, P., Jamjod, S., Yamuangmorn, S., Prom-U-Thai, C., & Sringarm, K. (2023). Antioxidant activities and characterization of polyphenols from selected Northern Thai rice husks: Relation with seed attributes. Rice Science, 30(2), 148–159. https://doi.org/10.1016/j.rsci.2023.01.007
  • Xiao, X., Wang, J., Meng, C., Liang, W., Wang, T., Zhou, B., Wang, Y., Luo, X., Gao, L., & Zhang, L. (2020). Moringa oleifera Lam and its therapeutic effects in immune disorders. Frontiers in Pharmacology, 11, 566783. https://doi.org/10.3389/fphar.2020.566783
  • Xu, Y. B., Chen, G. L., & Guo, M. Q. (2019). Antioxidant and anti-inflammatory activities of the crude extracts of Moringa oleifera from Kenya and their correlations with flavonoids. Antioxidants (Basel), 8(8), 296. https://doi.org/10.3390/antiox8080296
  • Xu, D., Hu, M. J., Wang, Y. Q., & Cui, Y. L. (2019). Antioxidant activities of quercetin and its complexes for medicinal application. Molecules, 24(6), 1123. https://doi.org/10.3390/molecules24061123
  • Zaccara, G., & Perucca, E. (2014). Interaction between antiepileptic drugs, and between antiepileptic drugs and other drugs. Epileptic Disorders, 16(4), 409–431. https://doi.org/10.1684/epd.2014.0714
  • Zhang, L., Hu, J. J., & Du, G. H. (2008). Establishment of a cell-based assay to screen insulin-like hypoglycemic drugs. Drug Discoveries and Therapeutics, 2(4), 229–233.
  • Zhou, Y., Wu, Y., Qin, Y., Liu, L., Wan, J., Zou, L., Zhang, Q., Zhu, J., & Mi, M. 2016. Ampelopsin improves insulin resistance by activating PPARγ and subsequently up-regulating FGF21-AMPK signaling pathway. InV. Sánchez-Margalet (Ed.), PLoS One, 11(7), e0159191. https://doi.org/10.1371/journal.pone.0159191