614
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Extraction optimization, antioxidants, and lipid-lowering activities of polygonatum cyrtonema Hua polysaccharides

, , , , , , , ORCID Icon, ORCID Icon & show all
Article: 2310071 | Received 23 Aug 2023, Accepted 21 Jan 2024, Published online: 21 Feb 2024

References

  • Cui, X., Wang, S., Cao, H., Guo, H., Li, Y., Xu, F., Zheng, M., Xi, X., & Han, C. (2018). A Review: The Bioactivities and Pharmacological Applications of Polygonatum sibiricum polysaccharides. Molecules, 23(5), 1170. https://doi.org/10.3390/molecules23051170
  • Dai, J., Ding, M., Chen, J., Qi, J., Zhu, Y., Li, Z., Zhu, L., & Wang, G. (2020). Optimization of gel mixture formulation based on weighted value using response surface methodology. CyTA - Journal of Food, 18(1), 500–8. https://doi.org/10.1080/19476337.2020.1789746
  • Ding, M., Tang, Z., Liu, W., Shao, T., Yuan, P., Chen, K., Zhou, Y., Han, J., Zhang, J., & Wang, G. (2021). Burdock fructooligosaccharide attenuates high glucose-induced apoptosis and oxidative stress injury in renal tubular epithelial cells. Frontiers in Pharmacology, 12, 784187. https://doi.org/10.3389/fphar.2021.784187
  • Ding, M., Wang, G., Yuan, P., He, S., Shao, T., Liu, C., & Kong, X. (2021). Research progress in the role and mechanism of polysaccharides in regulating glucose and lipid metabolism. Nan Fang Yi Ke da Xue Xue Bao = Journal of Southern Medical University, 41(3), 471–475. https://doi.org/10.12122/j.issn.1673-4254.2021.03.23
  • Gan, Q., Wang, X., Cao, M., Zheng, S., Ma, Y., & Huang, Q. (2022). NF-kappaB and AMPK-Nrf2 pathways support the protective effect of polysaccharides from polygonatum cyrtonema Hua in lipopolysaccharide-induced acute lung injury. Journal of Ethnopharmacology, 291, 115153. https://doi.org/10.1016/j.jep.2022.115153
  • Hu, J., Cheng, H., Xu, J., Liu, J., Xing, L., Shi, S., Wang, R., Wu, Z., Yu, N., & Peng, D. (2021). Determination and analysis of monosaccharides in polygonatum cyrtonema Hua polysaccharides from different areas by ultra-high-performance liquid chromatography quadrupole trap tandem mass spectrometry. Journal of Separation Science, 44(18), 3506–3515. https://doi.org/10.1002/jssc.202100263
  • Hu, Y., Yin, M., Bai, Y., Chu, S., Zhang, L., Yang, M., Zheng, X., Yang, Z., Liu, J., Li, L., Huang, L., & Peng, H. (2022). An evaluation of traits, nutritional, and medicinal component quality of Polygonatum cyrtonema Hua and P. sibiricum red. Frontiers in Plant Science, 13, 891775. https://doi.org/10.3389/fpls.2022.891775
  • Li, L., Liao, B. Y., Thakur, K., Zhang, J. G., & Wei, Z. J. (2018). The rheological behavior of polysaccharides sequential extracted from polygonatum cyrtonema Hua. International Journal of Biological Macromolecules, 109, 761–771. https://doi.org/10.1016/j.ijbiomac.2017.11.063
  • Liu, S., Jia, Q. J., Peng, Y. Q., Feng, T. H., Hu, S. T., Dong, J. E., & Liang, Z. S. (2022). Advances in mechanism research on polygonatum in prevention and treatment of diabetes. Frontiers in Pharmacology, 13, 758501. https://doi.org/10.3389/fphar.2022.758501
  • Liu, W., Shao, T., Tian, L., Ren, Z., Gao, L., Tang, Z., Fang, Z., Yuan, P., Liu, C., Li, J., Wang, G., & Han, J. (2022). Structural elucidation and anti-nonalcoholic fatty liver disease activity of polygonatum cyrtonema Hua polysaccharide. Food & Function, 13(24), 12883–12895. https://doi.org/10.1039/d2fo03384d
  • Li, J., Wang, X., Zhou, R., Cheng, F., Tang, X., Lao, J., Xu, L., He, W., Wan, D., Zeng, H., & Zhang, S. (2022). Polygonatum cyrtonema Hua Polysaccharides Protect BV2 Microglia Relief Oxidative Stress and Ferroptosis by Regulating NRF2/HO-1 Pathway. Molecules, 27(20), 7088. https://doi.org/10.3390/molecules27207088
  • Pan, S., & Wu, S. (2014). Cellulase-assisted extraction and antioxidant activity of the polysaccharides from garlic. Carbohydrate Polymers, 111, 606–609. https://doi.org/10.1016/j.carbpol.2014.05.022
  • Park, E. J., Lee, A. Y., Park, S., Kim, J. H., & Cho, M. H. (2014). Multiple pathways are involved in palmitic acid-induced toxicity. Food & Chemical Toxicology, 67, 26–34. https://doi.org/10.1016/j.fct.2014.01.027
  • Shen, W. D., Li, X. Y., Deng, Y. Y., Zha, X. Q., Pan, L. H., Li, Q. M., & Luo, J. P. (2021). Polygonatum cyrtonema Hua polysaccharide exhibits anti-fatigue activity via regulating osteocalcin signaling. International Journal of Biological Macromolecules, 175, 235–241. https://doi.org/10.1016/j.ijbiomac.2021.01.200
  • Shen, F., Xie, P., Li, C., Bian, Z., Wang, X., Peng, D., Zhu, G., & Huang, Z. (2022). Polysaccharides from polygonatum cyrtonema hua reduce depression-like behavior in mice by inhibiting oxidative stress-calpain-1-NLRP3 signaling axis. Oxidative Medicine and Cellular Longevity, 2022, 1–17. https://doi.org/10.1155/2022/2566917
  • Shi, L., Jiang, C., Xu, H., Wu, J., Lu, J., He, Y., Yin, X., Chen, Z., Cao, D., Shen, X., Hou, X., & Han, J. (2023). Hyperoside ameliorates cerebral ischaemic–reperfusion injury by opening the TRPV4 channel in vivo through the IP 3 -PKC signalling pathway. Le Pharmacien biologiste, 61(1), 1000–1012. https://doi.org/10.1080/13880209.2023.2228379
  • Souza, B. W. S., Cerqueira, M. A., Bourbon, A. I., Pinheiro, A. C., Martins, J. T., Teixeira, J. A., Coimbra, M. A., & Vicente, A. A. (2012). Chemical characterization and antioxidant activity of sulfated polysaccharide from the red seaweed gracilaria birdiae. Food Hydrocolloids, 27(2), 287–292. https://doi.org/10.1016/j.foodhyd.2011.10.005
  • Sun, Y., Guo, L. Q., Wang, D. G., Xing, Y. J., Bai, Y. P., Zhang, T., Wang, W., Zhou, S. M., Yao, X. M., Cheng, J. H., Chang, W. W., Lv, K., Li, C. X. & Kong, X. (2023). Metformin alleviates glucolipotoxicity-induced pancreatic beta cell ferroptosis through regulation of the GPX4/ACSL4 axis. European Journal of Pharmacology, 956, 175967. https://doi.org/10.1016/j.ejphar.2023.175967
  • Tang, C., Yu, Y. M., Qi, Q. L., Wu, X. D., Wang, J., & Tang, S. A. (2019). Steroidal saponins from the rhizome of Polygonatum sibiricum. Journal of Asian Natural Products Research, 21(3), 197–206. https://doi.org/10.1080/10286020.2018.1478815
  • Tang, Z., Zhang, M., Gao, L., Bao, Y., Li, P., Wang, M., Shao, T., Wang, G., & Liu, C. (2023). Optimal extraction of polysaccharides from Stevia rebaudiana roots for protection against hydrogen peroxide-induced oxidative damage in RAW264.7 cells. Natural Product Research, 1–5. https://doi.org/10.1080/14786419.2023.22639052
  • Tian, H., Liu, H., Song, W., Zhu, L., & Yin, X. (2021). Polysaccharide from Caulerpa lentillifera: Extraction optimization with response surface methodology, structure and antioxidant activities. Natural Product Research, 35(20), 3417–3425. https://doi.org/10.1080/14786419.2019.1700507
  • Venkatesan, M., Arumugam, V., Pugalendi, R., Ramachandran, K., Sengodan, K., Vijayan, S. R., Sundaresan, U., Ramachandran, S., & Pugazhendhi, A. (2019). Antioxidant, anticoagulant and mosquitocidal properties of water soluble polysaccharides (WSPs) from Indian seaweeds. Process Biochemistry, 84, 196–204. https://doi.org/10.1016/j.procbio.2019.05.029
  • Wang, Y., Li, Y., Li, T., Wei, Y., & Li, X. (2020). Optimization of impregnation conditions for furfurylated bamboo on response surface methodology. Journal of Biobased Materials and Bioenergy, 14(1), 50–57. https://doi.org/10.1166/jbmb.2020.1940
  • Yao, H. R., Liu, J., Plumeri, D., Cao, Y. B., He, T., Lin, L., Li, Y., Jiang, Y. Y., Li, J., & Shang, J. (2011). Lipotoxicity in HepG2 cells triggered by free fatty acids. American Journal of Translational Research, 3(3), 284–291. https://www.ncbi.nlm.nih.gov/pubmed/21654881
  • Zhou, Y., Liu, L., Xiang, R., Bu, X., Qin, G., Dai, J., Zhao, Z., Fang, X., Yang, S., Han, J., & Wang, G. (2023). Arctigenin mitigates insulin resistance by modulating the IRS2/GLUT4 pathway via TLR4 in type 2 diabetes mellitus mice. International Immunopharmacology, 114, 109529. https://doi.org/10.1016/j.intimp.2022.109529
  • Zhu, Z.-Y., Liu, F., Gao, H., Sun, H., Meng, M., & Zhang, Y.-M. (2016). Synthesis, characterization and antioxidant activity of selenium polysaccharide from cordyceps militaris. International Journal of Biological Macromolecules, 93, 1090–1099. https://doi.org/10.1016/j.ijbiomac.2016.09.076