1,292
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Microwave and ultrasound-assisted natural deep eutectic solvents-based extraction of pectin from onion peel wastes

&
Article: 2311215 | Received 10 Oct 2023, Accepted 23 Jan 2024, Published online: 22 Feb 2024

References

  • Abid, H., Hussain, A., & Ali, J. (2009). Technique of optimum extraction of pectin from sour orange peels and its chemical evaluation. Journal of the Chemical Society of Pakistan, 31(3), 459–11.
  • Alexander, M. M., & Sulebele, G. A. (1973). Pectic substances in onion and garlic skins. Journal of the Science of Food and Agriculture, 24(5), 611–615. https://doi.org/10.1002/jsfa.2740240514
  • Amorati, R., Foti, M. C., & Valgimigli, L. (2013). Antioxidant activity of essential oils. Journal of Agricultural and Food Chemistry, 61(46), 10835–10847. https://doi.org/10.1021/jf403496k
  • Bajkacz, S., & Adamek, J. (2018). Development of a method based on natural deep eutectic solvents for extraction of flavonoids from food samples. Food Analytical Methods, 11(5), 1330–1344. https://doi.org/10.1007/s12161-017-1118-5
  • Bamba, B. S. B., Gouin, J. A., Kouassi, E. K. A., Komenan, A. C. A., Akre, M. S. H., Soro, D., & Soro, Y. R. (2020). Production of pectin as a relevant tool for by-products management resulting from four tropical edible fruits processing: Extraction yield, physicochemical and functional properties of pectin powder. International Journal of Chemical and Process Engineering Research, 7(1), 60–73. https://doi.org/10.18488/journal.65.2020.71.60.73
  • Bayar, N., Friji, M., & Kammoun, R. (2018). Optimization of enzymatic extraction of pectin from Opuntia ficus indica cladodes after mucilage removal. Food Chemistry, 241, 127–134. https://doi.org/10.1016/j.foodchem.2017.08.051
  • Benito-Román, Ó., Alonso-Riaño, P., Díaz de Cerio, E., Sanz, M., & Beltrán, S. (2022). Semi-continuous hydrolysis of onion skin wastes with subcritical water: Pectin recovery and oligomers identification. Journal of Environmental Chemical Engineering, 10(3), 107439. https://doi.org/10.1016/j.jece.2022.107439
  • Bradford, M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1–2), 248–254. https://doi.org/10.1016/0003-2697(76)90527-3
  • By authority of the U.S. of America legally binding document. (1996). Food chemical codex, academy of sciences ( 4th ed).
  • Chau, C. F., & Huang, Y. L. (2003). Comparison of the chemical composition and physicochemical properties of different fibers prepared from the peel of Citrus sinensis L. Cv. Liucheng. Journal of Agricultural and Food Chemistry, 51(9), 2615–2618. https://doi.org/10.1021/jf025919b
  • Chen, M., & Lahaye, M. (2021). Natural deep eutectic solvents pretreatment as an aid for pectin extraction from apple pomace. Food Hydrocolloids, 115, 106601. https://doi.org/10.1016/j.foodhyd.2021.106601
  • Ciriminna, R., Fidalgo, A., Delisi, R., Tamburino, A., Carnaroglio, D., Cravotto, G., Ilharco, L. M., & Pagliaro, M. (2017). Controlling the degree of esterification of citrus pectin for demanding applications by selection of the source. American Chemical Society Omega, 2(11), 7991–7995. https://doi.org/10.1021/acsomega.7b01109
  • Cui, S. W., & Chang, Y. H. (2014). Emulsifying and structural properties of pectin enzymatically extracted from pumpkin. LWT - Food Science and Technology, 58(2), 396–403. https://doi.org/10.1016/j.lwt.2014.04.012
  • Deb Roy, S., Biswajit, D., Suvakanta, D., Ramesh Chandra, C., Jashabir, C., & Roy Saumendu, D. (2014). Optimization and characterization of purified polysaccharide from terminalia belarica gum as pharmaceutical excipient. International Journal of Pharmaceutical Research & Allied Sciences, 3(1), 21–29.
  • Dische, Z., & Borenfreund, E. (1951). A new spectrophotometric method for the detection and determination of keto sugars and trioses. The Journal of Biological Chemistry, 192(2), 583–587. https://doi.org/10.1016/S0021-9258(19)77782-5
  • Elgharbawy, A. A., Hayyan, A., Hayyan, M., Rashid, S. N., Nor, M. R. M., Zulkifli, M. Y., & Mirghani, M. E. S. (2018). Shedding light on lipase stability in natural deep eutectic solvents. Chemical and Biochemical Engineering Quarterly, 32(3), 359–370. https://doi.org/10.15255/CABEQ.2018.1335
  • Galanakis, C. M. (2015). Separation of functional macromolecules and micromolecules: From ultrafiltration to the border of nanofiltration. Trends in Food Science and Technology, 42(1), 44–63. https://doi.org/10.1016/j.tifs.2014.11.005
  • Galanakis, C. M. (2020a). The food systems in the era of the coronavirus (COVID-19) pandemic crisis. Foods, 9(4), 523. https://doi.org/10.3390/foods9040523
  • Galanakis, C. M. (2020b). Functionality of food components and emerging technologies. Foods, 10(1), 128. https://doi.org/10.3390/foods10010128
  • Galanakis, C. M. (2022). The “vertigo” of the food sector within the triangle of climate change, the post-pandemic World, and the Russian-Ukrainian war. Foods, 12(4), 721. https://doi.org/10.3390/foods12040721
  • Galanakis, C. M., Aldawoud, T. M. S., Rizou, M., Rowan, N. J., & Ibrahim, S. A. (2020). Food ingredients and active compounds against the coronavirus disease (COVID-19) pandemic: A comprehensive review. Foods, 9(1), 1701. MDPI. https://doi.org/10.3390/foods9111701
  • Galanakis, C. M., Rizou, M., Aldawoud, T. M. S., Ucak, I., & Rowan, N. J. (2021). Innovations and technology disruptions in the food sector within the COVID-19 pandemic and post-lockdown era. Trends in Food Science & Technology, 110(1), 193–200. https://doi.org/10.1016/j.tifs.2021.02.002
  • Garna, H., Mabon, N., Wathelet, B., & Paquot, M. (2004). New method for a two-step hydrolysis and chromatographic analysis of pectin neutral sugar chains. Journal of Agricultural and Food Chemistry, 52(15), 4652–4659. https://doi.org/10.1021/jf049647j
  • Gharibzahedi, S. M. T. (2017). Ultrasound-mediated nettle oil nanoemulsions stabilized by purified jujube polysaccharide: Process optimization, microbial evaluation and physicochemical storage stability. Journal of Molecular Liquids, 234(1), 240–248. https://doi.org/10.1016/j.molliq.2017.03.094
  • Gharibzahedi, S. M. T., Rostami, H., & Yousefi, S. (2015). Formulation design and physicochemical stability characterization of nanoemulsions of nettle (urtica dioica) essential oil using a model-based methodology. Journal of Food Processing and Preservation, 39(6), 2947–2958. https://doi.org/10.1111/jfpp.12546
  • Gharibzahedi, S. M. T., Smith, B., & Guo, Y. (2019). Ultrasound-microwave assisted extraction of pectin from fig (Ficus carica L.) skin: Optimization, characterization and bioactivity. Carbohydrate Polymers, 222, 222. https://doi.org/10.1016/j.carbpol.2019.114992
  • Girma, E., & Teshome Worku, M. (2016). Extraction and characterization of Pectin from selected fruit peel waste. International Journal of Scientific and Research Publications, 6(2), 447. www.ijsrp.org
  • Hamidon, N. H., & Zaidel, D. N. A. (2017). Effect of extraction conditions on pectin yield extracted from sweet potato peels residues using hydrochloric acid. Chemical Engineering Transactions, 56, 979–984. https://doi.org/10.3303/CET1756164
  • Jabbar, S., Abid, M., Wu, T., Hashim, M. M., Saeeduddin, M., Hu, B., Lei, S., & Zeng, X. (2015). Ultrasound-assisted extraction of bioactive compounds and antioxidants from Carrot Pomace: A response surface approach. Journal of Food Processing and Preservation, 39(6), 1878–1888. https://doi.org/10.1111/jfpp.12425
  • Kamnev, A. A., Colina, M., Rodriguez, J., Ptitchkina, N. M., & Ignatov, V. V. (1998). Comparative spectroscopic characterization of different pectins and their sources. Food Hydrocolloids, 12(3), 263–271. https://doi.org/10.1016/S0268-005X(98)00014-9
  • Khamsucharit, P., Laohaphatanalert, K., Gavinlertvatana, P., Sriroth, K., & Sangseethong, K. (2018). Characterization of pectin extracted from banana peels of different varieties. Food Science and Biotechnology, 27(3), 623–629. https://doi.org/10.1007/s10068-017-0302-0
  • Konrade, D., Gaidukovs, S., Vilaplana, F., & Sivan, P. (2023). Pectin from fruit- and berry-juice production by-products: Determination of physicochemical, antioxidant and rheological properties. Foods, 12(8), 1615. https://doi.org/10.3390/foods12081615
  • Kumar, S., Ozukum, R., & Mathad, G. M. (2020). Extraction, characterization and utilization of pectin from apple peels. Journal of Pharmacognosy & Phytochemistry, 9(5), 2599–2604. https://doi.org/10.22271/phyto.2020.v9.i5aj.12736
  • Kurita, N., & Yamada, H. (2008). The role of local moisture recycling evaluated using stable isotope data from over the middle of the Tibetan Plateau during the monsoon season. Journal of Hydrometeorology, 9(4), 760–775. https://doi.org/10.1175/2007JHM945.1
  • Li, J. E., Nie, S. P., Xie, M. Y., & Li, C. (2014). Isolation and partial characterization of a neutral polysaccharide from Mosla chinensis Maxim. cv. Jiangxiangru and its antioxidant and immunomodulatory activities. Journal of Functional Foods, 6, 410–418. https://doi.org/10.1016/j.jff.2013.11.007
  • Lochhead, R. Y. (2017). The use of polymers in cosmetic products. In Cosmetic science and technology: Theoretical principles and applications (pp. 171–221). Elsevier Inc. https://doi.org/10.1016/B978-0-12-802005-0.00013-6
  • Lojková, L., Pluháčková, H., Benešová, K., Kudláčková, B., & Cerkal, R. (2023). The highest yield, or greener solvents? Latest trends in quercetin extraction methods. TrAc Trends in Analytical Chemistry, 167, 117229. https://doi.org/10.1016/j.trac.2023.117229
  • Masuko, T., Minami, A., Iwasaki, N., Majima, T., Nishimura, S. I., & Lee, Y. C. (2005). Carbohydrate analysis by a phenol–sulfuric acid method in microplate format. Analytical Biochemistry, 339(1), 69–72. https://doi.org/10.1016/j.ab.2004.12.001
  • Moorthy, I. G., Maran, J. P., Surya, S. M. @., Naganyashree, S., & Shivamathi, C. S. (2015). Response surface optimization of ultrasound assisted extraction of pectin from pomegranate peel. International Journal of Biological Macromolecules, 72, 1323–1328. https://doi.org/10.1016/j.ijbiomac.2014.10.037
  • Muhammad, K., Nur, N. I., Gannasin, S. P., Adzahan, N. M., & Bakar, J. (2014). High methoxyl pectin from dragon fruit (Hylocereus polyrhizus) peel. Food Hydrocolloids, 42(P2), 289–297. https://doi.org/10.1016/j.foodhyd.2014.03.021
  • Muñoz-Almagro, N., Ruiz-Torralba, A., Méndez-Albiñana, P., Guerra-Hernández, E., García-Villanova, B., Moreno, R., Montilla, A., & Montilla, A. (2021). Berry fruits as source of pectin: Conventional and non-conventional extraction techniques. International Journal of Biological Macromolecules, 186, 962–974. https://doi.org/10.1016/j.ijbiomac.2021.07.016
  • Oliveira, T. Í. S., Rosa, M. F., Cavalcante, F. L., Pereira, P. H. F., Moates, G. K., Wellner, N., Azeredo, H. M. C., Waldron, K. W., & Azeredo, H. M. C. (2016). Optimization of pectin extraction from banana peels with citric acid by using response surface methodology. Food Chemistry, 198, 113–118. https://doi.org/10.1016/j.foodchem.2015.08.080
  • Pal, C. B. T., & Jadeja, G. C. (2019). Deep eutectic solvent‐based extraction of polyphenolic antioxidants from onion (<scp>Allium cepa </scp> L.) peel. Journal of the Science of Food and Agriculture, 99(4), 1969–1979. https://doi.org/10.1002/jsfa.9395
  • Ranganna, S. (Ed). (2010). Handbook of analysis and quality control for fruit and vegetable products. Tata McGraw Hill education Pvt. Ltd.
  • Rostami, H., & Gharibzahedi, S. M. T. (2017). Cellulase-assisted extraction of polysaccharides from malva sylvestris: Process optimization and potential functionalities. International Journal of Biological Macromolecules, 101, 196–206. https://doi.org/10.1016/j.ijbiomac.2017.03.078
  • Santra, S., Das, M., Karmakar, S., & Banerjee, R. (2023). NADES assisted integrated biorefinery concept for pectin recovery from kinnow (citrus reticulate) peel and strategic conversion of residual biomass to L(+) lactic acid. International Journal of Biological Macromolecules, 250, 126169. https://doi.org/10.1016/j.ijbiomac.2023.126169
  • Şen, E., Göktürk, E., Hajiyev, V., & Uğuzdoğan, E. (2023). Comparisons of pulsed ultrasound-assisted and hot-acid extraction methods for pectin extraction under dual acid mixtures from onion (allium cepa L.) waste. Food Science & Nutrition, 11(11), 7320–7329. https://doi.org/10.1002/fsn3.3657
  • Shafie, M. H., Yusof, R., & Gan, C. Y. (2019). Deep eutectic solvents (DES) mediated extraction of pectin from Averrhoa bilimbi: Optimization and characterization studies. Carbohydrate Polymers, 216(1), 303–311. https://doi.org/10.1016/j.carbpol.2019.04.007
  • Shah, S. N., Erbas, Z., & Soylak, M. (2022). A novel-easy deep eutectic solvent-based microextraction procedure for the separation, preconcentration and spectrophotometric determination of chromotrope 2R in water, detergent and food samples. International Journal of Environmental Analytical Chemistry, 102(1), 3373–3382. https://doi.org/10.1080/03067319.2020.1768249
  • Siddiqui, A., Chand, K., & Shahi, N. C. (2021). Effect of process parameters on extraction of pectin from sweet lime peels. Journal of the Institution of Engineers (India): Series A, 102(2), 469–478. https://doi.org/10.1007/s40030-021-00514-3
  • Silva, M. G. R., Skrt, M., Komes, D., Ulrih, N. P., & Pogačnik, L. (2020). Enhanced yield of bioactivities from onion (Allium cepa L.) skin and their antioxidant and anti-α-amylase activities. International Journal of Molecular Sciences, 21(8), 2909. https://doi.org/10.3390/ijms21082909
  • Song, W., He, Y., Huang, R., Li, J., Yu, Y., & Xia, P. (2023). Life cycle assessment of deep-eutectic-solvent-assisted hydrothermal disintegration of microalgae for biodiesel and biogas co-production. Applied Energy, 335, 120758. https://doi.org/10.1016/j.apenergy.2023.120758
  • Soylak, M., & Koksal, M. (2019). Deep eutectic solvent microextraction of lead(II), cobalt(II), nickel(II) and manganese(II) ions for the separation and preconcentration in some oil samples from Turkey prior to their microsampling flame atomic absorption spectrometric determination. Microchemical Journal, 147, 832–837. https://doi.org/10.1016/j.microc.2019.04.006
  • Sukor, N. F., Selvam, V. P., Jusoh, R., Kamarudin, N. S., & Rahim, S. A. (2021). Intensified DES mediated ultrasound extraction of tannic acid from onion peel. Journal of Food Engineering, 296, 110437. https://doi.org/10.1016/j.jfoodeng.2020.110437
  • Thirugnanasambandham, K., Sivakumar, V., & Maran, J. P. (2015). Microwave-assisted extraction of polysaccharides from mulberry leaves. International Journal of Biological Macromolecules, 72, 1–5. https://doi.org/10.1016/j.ijbiomac.2014.07.031
  • Wang, S., Lei, T., Liu, L., & Tan, Z. (2024). CO2-responsive deep eutectic solvents for the enhanced extraction of hesperidin from fertile orange peel. Food Chemistry, 432, 137255. https://doi.org/10.1016/j.foodchem.2023.137255