763
Views
0
CrossRef citations to date
0
Altmetric
Research Article

The viability of microorganism of probiotic yogurt enriched with bee pollen

ORCID Icon & ORCID Icon
Article: 2319834 | Received 01 Dec 2023, Accepted 12 Feb 2024, Published online: 01 Mar 2024

References

  • Abbas, K. A., Othman, F. A., Deghedie, M. A., & Abd Elmontaleb, H. S. (2023). The impact of bee pollen addition on the quality characteristics of probiotic UF-soft cheese. Egyptian Journal of Food Science, 51(1), 33–16. https://doi.org/10.21608/EJFS.2023.174240.1146
  • Abd Elhamid, A. M., & Elbayoumi, M. M. (2017). Influence of bee pollen on the bioactive behavior, sensory and physicochemical properties of white cheese made from camel and cow milk mixture. Journal of Food and Dairy Sciences, 8(11), 419–424. https://doi.org/10.21608/jfds.2017.38933
  • Adolfsson, O., Meydani, S. N., & Russell, R. M. (2004). Yogurt and gut function. The American Journal of Clinical Nutrition, 80(2), 245–256. https://doi.org/10.1093/ajcn/80.2.245
  • Algethami, J. S., El-Wahed, A. A. A., Elashal, M. H., Ahmed, H. R., Elshafiey, E. H., Omar, E. M., Naggar, Y. A., Algethami, A. F., Shou, Q., Alsharif, S. M., Xu, B., Shehata, A. A., Guo, Z., Khalifa, S. A. M., Wang, K., & El-Seedi, H. R. (2022). Bee pollen: Clinical trials and patent applications. Nutrients, 14(14), 2858: 1–26. https://doi.org/10.3390/nu14142858
  • Anjos, O., Fernandes, R., Cardoso, S. M., Delgado, T., Farinha, N., Paula, V., Estevinho, L. M., & Carpes, S. T. (2019). Bee pollen as a natural antioxidant source to prevent lipid oxidation in black pudding. LWT - Food Science and Technology, 111, 869–875. https://doi.org/10.1016/j.lwt.2019.05.105
  • Anonymous. (2023a). Functional Food Market by Ingredient (Probiotics, Minerals, Proteins & Amino Acids, Prebiotics, & Dietary Fibers, Vitamins and Others), Product (Bakery & Cereals, Dairy Products, Meat, Fish & Eggs, Soy Products, Fats & Oils and Others), Application (Sports Nutrition, Weight Management Clinical Nutrition, Cardio Health, and Others): Global Opportunity Analysis and Industry Forecast 2021–2027. Retrieved May 11, 2023, from https://www.alliedmarketresearch.com/functional-food-market
  • Anonymous. (2023b). Functional foods market size, share & trends analysis report by ingredient (carotenoids, prebiotics & probiotics, fatty acids, dietary fibers), by product, by application, by region, and segment forecasts, 2022 - 2030. Retrieved December 31, 2023, from https://www.grandviewresearch.com/industry-analysis/functional-food-market?utm_source=prnewswire&utm_medium=referral&utm_campaign=CMFE_15-Dec-22&utm_term=functional_food_market&utm_content=rd
  • Anonymous. (2023c). Probiotics market size, share & trends analysis report by product (food & beverages, dietary supplements), by ingredient (bacteria, yeast), by distribution channel, by end-use, by region, and segment forecasts, 2023 - 2030. Retrieved December 31, 2023, from https://www.grandviewresearch.com/industry-analysis/probiotics-market
  • Anonymous. (2023d). Probiyotik Yoğurt Mayası. Retrieved January 01, 2024, from https://doi.org/10.1000/yaylamaya
  • AOAC. (1995). pH of acidified foods method, method no. 981.12. In P. Cunniff (Ed.), Official methods of AOAC international analyses (16th ed., pp. 780). Association of Official Analytical Chemists.
  • Ares, A. M., Valverde, S., Bernal, J. L., Nozal, M. J., & Bernal, J. (2018). Extraction and determination of bioactive compounds from bee pollen. Journal of Pharmaceutical & Biomedical Analysis, 147, 110–124. https://doi.org/10.1016/j.jpba.2017.08.009
  • Atallah, A. A. (2016). The production of bio-yoghurt with probiotic bacteria, royal jelly and bee pollen grains. Journal of Nutrition & Food Sciences, 6(3), 510.
  • Aylanc, V., Ertosun, S., Russo‐Almeida, P., Falcão, S. I., & Vilas‐Boas, M. (2022). Performance of green and conventional techniques for the optimal extraction of bioactive compounds in bee pollen. International Journal of Food Science & Technology, 57(6), 3490–3502. https://doi.org/10.1111/ijfs.15672
  • Ayyash, M. M., Abdalla, A. K., AlKalbani, N. S., Baig, M. A., Turner, M. S., Liu, S. Q., & Shah, N. P. (2021). Invited review: Characterization of new probiotics from dairy and nondairy products—insights into acid tolerance, bile metabolism and tolerance, and adhesion capability. Journal of Dairy Science, 104(8), 8363–8379. https://doi.org/10.3168/jds.2021-20398
  • Azizkhani, M., Saris, P. E. J., & Baniasadi, M. (2021). An in-vitro assessment of antifungal and antibacterial activity of cow, camel, ewe, and goat milk kefir and probiotic yogurt. Journal of Food Measurement and Characterization, 15(1), 406–415. https://doi.org/10.1007/s11694-020-00645-4
  • Azizkhani, M., & Tooryan, F. (2016). Antimicrobial activities of probiotic yogurts flavored with peppermint, Basil, and Zataria against Escherichia coli and Listeria monocytogenes. Journal of Food Quality & Hazards Control, 3(3), 79–86.
  • Bedani, R., Rossi, E. A., & Saad, S. M. I. (2013). Impact of inulin and okara on Lactobacillus acidophilus La-5 and Bifidobacterium animalis Bb-12 viability in a fermented soy product and probiotic survival under in vitro simulated gastrointestinal conditions. Food Microbiology, 34(2), 382–389. https://doi.org/10.1016/j.fm.2013.01.012
  • Casarotti, S. N., & Penna, A. L. B. (2015). Acidification profile, probiotic in vitro gastrointestinal tolerance and viability in fermented milk with fruit flours. International Dairy Journal, 41, 1–6. https://doi.org/10.1016/j.idairyj.2014.08.021
  • Charteris, W. P., Kelly, P. M., Morelli, L., & Collins, J. K. (1998). Development and application of an in vitro methodology to determine the transit tolerance of potentially probiotic Lactobacillus and Bifidobacterium species in the upper human gastrointestinal tract. Journal of Applied Microbiology, 84(5), 759–768. https://doi.org/10.1046/j.1365-2672.1998.00407.x
  • CLSI M02, M02-A12. (2015). Performance standards for antimicrobial disk susceptibility tests. (Chap. 1, 12th ed., Vol. 35). Clinical and Laboratory Standards Institute.
  • CLSI M07-A8. (2009). Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically. (Chap. 2, 8th ed., Vol. 26). Clinical and Laboratory Standards Institute.
  • CLSI M45. (2016). Methods for antimicrobial dilution and disk susceptibility testing of ınfrequently ısolated or fastidious bacteria (Chap. 17, 3rd ed., Vol.35). Clinical and Laboratory Standards Institute.
  • Conte, P., Del Caro, A., Balestra, F., Piga, A., & Fadda, C. (2018). Bee pollen as a functional ingredient in gluten-free bread: A physical-chemical, technological and sensory approach. LWT - Food Science and Technology, 90, 1–7. https://doi.org/10.1016/j.lwt.2017.12.002
  • Da Silva, T. M. S., Piazentin, A. C. M., Mendonça, C. M. N., Converti, A., Bogsan, C. S. B., Mora, D., & de Souza Oliveira, R. P. (2020). Buffalo milk increases viability and resistance of probiotic bacteria in dairy beverages under in vitro simulated gastrointestinal conditions. Journal of Dairy Science, 103(9), 7890–7897. https://doi.org/10.3168/jds.2019-18078
  • de Florio Almeida, J., dos Reis, A. S., Heldt, L. F. S., Pereira, D., Bianchin, M., de Moura, C., Plata-Oviedo, M. V., Haminiuk, C. W. I., Ribeiro, I. S., da Luz, C. F. P., & Carpes, S. T. (2017). Lyophilized bee pollen extract: A natural antioxidant source to prevent lipid oxidation in refrigerated sausages. LWT-Food Science and Technology, 76, 299–305. https://doi.org/10.1016/j.lwt.2016.06.017
  • Del Rio, A. R., Keppler, J. K., Boom, R. M., & Janssen, A. E. (2021). Protein acidification and hydrolysis by pepsin ensure efficient trypsin-catalyzed hydrolysis. Food & Function, 12(10), 4570–4581. https://doi.org/10.1039/D1FO00413A
  • De Melo, A. A. M., & de Almeida-Muradian, L. B. (2017). Health benefits and uses in medicine of bee pollen. In J. M. Alvarez-Suarez (Ed.), Bee Products-Chemical and Biological Properties, 261–276. Springer International Publishing AG.
  • Denisow, B., & Denisow‐Pietrzyk, M. (2016). Biological and therapeutic properties of bee pollen: A review. Journal of the Science of Food and Agriculture, 96(13), 4303–4309. https://doi.org/10.1002/jsfa.7729
  • Eşerler, S., Vardarlı, S., Savaş, G., & Mutlu, C. (2023). Arı poleninin bazı fiziksel, fonksiyonel ve kimyasal özellikleri ve biyolojik etkileri (Some physical, functional and chemical properties and biological effects of bee pollen). Uludağ Arıcılık Dergisi, 23(2), 280–295. https://doi.org/10.31467/uluaricilik.1319365
  • Estevinho, L. M., Rodrigues, S., Pereira, A. P., & Feás, X. (2012). Portuguese bee pollen: palynological study, nutritional and microbiological evaluation. International Journal of Food Science & Technology, 47(2), 429–435. https://doi.org/10.1111/j.1365-2621.2011.02859.x
  • Farag, S. A., & El-Rayes, T. (2016). Research article effect of bee-pollen supplementation on performance, carcass traits and blood parameters of broiler chickens. Asian Journal of Animal and Veterinary Advances, 11(3), 168–77. https://doi.org/10.3923/ajava.2016.168.177
  • Feás, X., Vázquez-Tato, M. P., Estevinho, L., Seijas, J. A., & Iglesias, A. (2012). Organic bee pollen: botanical origin, nutritional value, bioactive compounds, antioxidant activity and microbiological quality. Molecules, 17(7), 8359–8377. https://doi.org/10.3390/molecules17078359
  • Fernandez, M. A., Panahi, S., Daniel, N., Tremblay, A., & Marette, A. (2017). Yogurt and cardiometabolic diseases: A critical review of potential mechanisms. Advances in Nutrition, 8(6), 812–829. https://doi.org/10.3945/an.116.013946
  • Gahruie, H. H., Eskandari, M. H., Mesbahi, G., & Hanifpour, M. A. (2015). Scientific and technical aspects of yogurt fortification: A review. Food Science and Human Wellness, 4(1), 1–8. https://doi.org/10.1016/j.fshw.2015.03.002
  • Ghaderi‐Ghahfarokhi, M., Yousefvand, A., Ahmadi Gavlighi, H., & Zarei, M. (2021). The effect of hydrolysed tragacanth gum and inulin on the probiotic viability and quality characteristics of low‐fat yoghurt. International Journal of Dairy Technology, 74(1), 161–169. https://doi.org/10.1111/1471-0307.12742
  • Glušac, J. R., Stijepić, M. J., Milanović, S. D., & Đurđević-Milošević, D. M. (2015). Physicochemical properties of honeybee pollen enriched acidophilus milk and probiotic yoghurt. Acta Periodica Technologica, 46(46), 45–54. https://doi.org/10.2298/APT1546045G
  • Gocer, E. M. C., Ergin, F., Kücükcetin, I. O., & Kücükcetin, A. (2021). In vitro gastrointestinal resistance of Lactobacillus acidophilus in some dairy products. Brazilian Journal of Microbiology, 52(4), 2319–2334. https://doi.org/10.1007/s42770-021-00590-4
  • Güneş, R., Palabıyık, İ., & Kurultay, Ş. (2018). Şekerleme teknolojisinde fonksiyonel ürün üretimi. Gıda, 43(6), 984–1001. https://doi.org/10.15237/gida.GD18088
  • Hacıoğlu, G., & Kurt, G. (2012). Tüketicilerin fonksiyonel gıdalara yönelik farkındalığı, kabulü ve tutumları: İzmir ili örneği. Business and Economics Research Journal, 3(1), 161–171.
  • Hani, B., Dalila, B., Saliha, D., Daoud, H., Mouloud, G., & Seddik, K. (2012). Microbiological sanitary aspects of pollen. Advances in Environmental Biology, 6(4), 1415–1420.
  • Hill, C., Guarner, F., Reid, G., Gibson, G. R., Merenstein, D. J., & Pot, B., Morelli, L., Canani, R. B., Flint, H. J., Salminen, S., Calder, P. C. & Sanders, M. E. (2014). Expert consensus document: The international scientific association for probiotics and prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nature Reviews Gastroenterology & Hepatology, 11, 506–514. https://doi.org/10.1038/nrgastro.2014.66
  • Huang, Y., & Adams, M. C. (2004). In vitro assessment of the upper gastrointestinal tolerance of potential probiotic dairy propionibacteria. International Journal of Food Microbiology, 91(3), 253–260. https://doi.org/10.1016/j.ijfoodmicro.2003.07.001
  • ISO 6887-1. (2017). International organization for standardization, microbiology of the food chain — preparation of test samples, initial suspension and decimal dilutions for microbiological examination — part 1: General rules for the preparation of the initial suspension and decimal dilutions, ISO 6887-1. Swiss.
  • Kailasapathy, K., & Rybka, S. (1997). L. Acidophilus and bifidobacterium spp. - their therapeutic potential and survival in yogurt. Australian Journal of Dairy Technology, 52(1), 28–35.
  • Karabagias, I. K., Karabagias, V. K., Gatzias, I., & Riganakos, K. A. (2018). Bio-functional properties of bee pollen: The case of “bee pollen yoghurt”. Coatings, 8(12), 423. https://doi.org/10.3390/coatings8120423
  • Karaman Mutlu, S. (2019). Investigation of the effect of acacia gum and pectin addition on the functional and technological properties of black carrot added probiotic yogurt [ Master thesis, Uludağ University].
  • Kaur Sidhu, M., Lyu, F., Sharkie, T. P., Ajlouni, S., & Ranadheera, C. S. (2020). Probiotic yogurt fortified with chickpea flour: Physico-chemical properties and probiotic survival during storage and simulated gastrointestinal transit. Foods, 9(9), 1144. https://doi.org/10.3390/foods9091144
  • Kok, C. R., & Hutkins, R. (2018). Yogurt and other fermented foods as sources of health-promoting bacteria. Nutrition Reviews, 76(Supplement_1), 4–15. https://doi.org/10.1093/nutrit/nuy056
  • Komosinska-Vassev, K., Olczyk, P., Kaźmierczak, J., Mencner, L., & Olczyk, K. (2015). Bee pollen: Chemical composition and therapeutic application. Evidence-Based Complementary and Alternative Medicine, 2015, 1–6. https://doi.org/10.1155/2015/297425
  • Lapierre, L., Undeland, P., & Cox, L. J. (1992). Lithium chloride-sodium propionate agar for the enumeration of bifidobacteria in fermented dairy products. Journal of Dairy Science, 75(5), 1192–1196. https://doi.org/10.3168/jds.S0022-0302(92)77866-7
  • Lomova, N., Snizhko, O., & Narizhniy, S. (2014). Yoghurt enrichment with natural bee farming products. Ukrainian Food Journal, 3(3), 405–411. http://193.138.93.8/bitstream/BNAU/905/1/Yoghurt_enrichm.pdf
  • Madureira, A. R., Amorim, M., Gomes, A. M., Pintado, M. E., & Malcata, F. X. (2011). Protective effect of whey cheese matrix on probiotic strains exposed to simulated gastrointestinal conditions. Food Research International, 44(1), 465–470. https://doi.org/10.1016/j.foodres.2010.09.010
  • Makino, S., Ikegami, S., Kano, H., Sashihara, T., Sugano, H., Horiuchi, H., Saito, T., & Oda, M. (2006). Immunomodulatory effects of polysaccharides produced by Lactobacillus delbrueckii ssp. bulgaricus OLL1073R-1. Journal of Dairy Science, 89(8), 2873–2881. https://doi.org/10.3168/jds.S0022-0302(06)72560-7
  • Markowiak, P., & Śliżewska, K. (2017). Effects of probiotics, prebiotics, and synbiotics on human health. Nutrients, 9(9), 1021. https://doi.org/10.3390/nu9091021
  • Matuszewska, E., Klupczynska, A., Maciołek, K., Kokot, Z. J., & Matysiak, J. (2021). Multielemental analysis of bee pollen, propolis, and royal jelly collected in west-central Poland. Molecules, 26(9), 2415. https://doi.org/10.3390/molecules26092415
  • Megur, A., Daliri, E. B. M., Balnionytė, T., Stankevičiūtė, J., Lastauskienė, E., & Burokas, A. (2023). In vitro screening and characterization of lactic acid bacteria from Lithuanian fermented food with potential probiotic properties. Frontiers in Microbiology, 14, 14. https://doi.org/10.3389/fmicb.2023.1213370
  • Michels, K. B., Willett, W. C., Vaidya, R., Zhang, X., & Giovannucci, E. (2020). Yogurt consumption and colorectal cancer incidence and mortality in the Nurses’ Health Study and the health professionals follow-up study. The American Journal of Clinical Nutrition, 112(6), 1566–1575. https://doi.org/10.1093/ajcn/nqaa244
  • Mirzaei, E. Z., Lashani, E., & Davoodabadi, A. (2018). Antimicrobial properties of lactic acid bacteria isolated from traditional yogurt and milk against Shigella strains. GMS Hygiene and Infection Control 13(Doc01),1–5.
  • Mohdaly, A. A., Mahmoud, A. A., Roby, M. H., Smetanska, I., & Ramadan, M. F. (2015). Phenolic extract from propolis and bee pollen: Composition, antioxidant and antibacterial activities. Journal of Food Biochemistry, 39(5), 538–547. https://doi.org/10.1111/jfbc.12160
  • Mohsin, A. Z., Marzlan, A. A., Muhialdin, B. J., Wai, L. K., Mohammed, N. K., & Hussin, A. S. M. (2022). Physicochemical characteristics, GABA content, antimicrobial and antioxidant capacities of yogurt from Murrah buffalo milk with different fat contents. Food Bioscience, 49, 101949. https://doi.org/10.1016/j.fbio.2022.101949
  • Molaee Parvarei, M., Fazeli, M. R., Mortazavian, A. M., Sarem Nezhad, S., & Mortazavi, S. A. (2021). Comparative effect of probiotic and paraprobiotic addition on rheological and sensory properties of yoghurt. International Journal of Dairy Technology, 74(1), 95–106. https://doi.org/10.1111/1471-0307.12727
  • Namaei, M. H., Ghannadkafi, M., & Ziaee, M. (2015). Antibacterial effect of non-industrial yogurt on salmonella and shigella. Modern Care Journal, 12(3), 109–113.
  • Özcan, M., Fındık, S., Uylaşer, V., & Çoban, D. İ. (2020). Investigation of the physical and chemical properties of traditional homemade yogurt with different rates of pollen additions. The European Journal of Science and Technology, 20, 516–521. https://doi.org/10.31590/ejosat.736476
  • Peng, S., Song, J., Zeng, W., Wang, H., Zhang, Y., Xin, J., & Suo, H. (2021). A broad-spectrum novel bacteriocin produced by lactobacillus plantarum SHY 21–2 from yak yogurt: Purification, antimicrobial characteristics and antibacterial mechanism. LWT - Food Science and Technology, 142, 110955. https://doi.org/10.1016/j.lwt.2021.110955
  • Ranadheera, C. S., Evans, C. A., Adams, M. C., & Baines, S. K. (2012). In vitro analysis of gastrointestinal tolerance and intestinal cell adhesion of probiotics in goat’s milk ice cream and yogurt. Food Research International, 49(2), 619–625. https://doi.org/10.1016/j.foodres.2012.09.007
  • Rzepecka-Stojko, A., Stojko, J., Kurek-Górecka, A., Górecki, M., Kabała-Dzik, A., Kubina, R., Moździerz, A., & Buszman, E. (2015). Polyphenols from bee pollen: Structure, absorption, metabolism and biological activity. Molecules, 20(12), 21732–21749. https://doi.org/10.3390/molecules201219800
  • Seçkin, A. K., & Baladura, E. (2011). Süt ve süt ürünlerinin fonksiyonel özellikleri. Celal Bayar University Journal of Science, 7(1), 27–38.
  • Sert, D., Akın, N., & Dertli, E. (2011). Effects of sunflower honey on the physicochemical, microbiological and sensory characteristics in set type yoghurt during refrigerated storage. International Journal of Dairy Technology, 64(1), 99–107. https://doi.org/10.1111/j.1471-0307.2010.00635.x
  • Sezen, F., & Koçak, C. (2006). Fonksiyonel süt ürünleri teknolojisindeki gelişmeler. In 9. Gıda Kongresi, Bolu, Turkey, 24-26 May 2006 (pp. 89–92). Gıda Teknolojisi Derneği Yayın.
  • Şimşekli, N., & Doğan, İ. S. (2015). Geleneksel ve fonksiyonel ürün olarak Maraş tarhanası. Iğdır University Journal of the Institute of Science and Technology, 5(4), 33–40.
  • Soylu, P., & Bayram, B. (2020). Bal, propolis, arı sütü, çivanperçemi (Achillea millefolium) ve ekinezya (Echinacea paradoxa) karışımından fonksiyonel gıda üretimi, ürünün fizikokimyasal ve biyokimyasal özelliklerinin incelenmesi. Journal of Bahri Dagdas Animal Research, 9(1), 25–38.
  • Sun, L., Guo, Y., Zhang, Y., & Zhuang, Y. (2017). Antioxidant and anti-tyrosinase activities of phenolic extracts from rape bee pollen and inhibitory melanogenesis by cAMP/MITF/TYR pathway in B16 mouse melanoma cells. Frontiers in Pharmacology, 8(104), 1–9. https://doi.org/10.3389/fphar.2017.00104
  • Thakur, M., & Nanda, V. (2020). Composition and functionality of bee pollen: A review. Trends in Food Science & Technology, 98, 82–106. https://doi.org/10.1016/j.tifs.2020.02.001
  • TS ISO 7889. (2004). Yoğurt. Karakteristik mikroorganizmaların sayımı. 37°C‘de koloni sayım tekniği. Türk Standartlar Enstitüsü.
  • Uțoiu, E., Matei, F., Toma, A., Diguță, C. F., Ștefan, L. M., Mănoiu, S., Vrăjmașu, V. V., Moraru, I., Oancea, A., & Israel-Roming, F. (2018). Bee Collected Pollen with enhanced health benefits, produced by fermentation with a Kombucha Consortium. Nutrients, 10(10), 1365. https://doi.org/10.3390/nu10101365
  • Vinderola, G., Cespedes, M., Mateolli, D., Cardenas, P., Lescano, M., Aimaretti, N., & Reinheimer, J. (2011). Changes in gastric resistance of Lactobacillus casei in flavoured commercial fermented milks during refrigerated storage. International Journal of Dairy Technology, 64(2), 269–275. https://doi.org/10.1111/j.1471-0307.2010.00659.x
  • Vinderola, C. G., & Reinheimer, J. A. (1999). Culture media for the enumeration of bifidobacterium bifidum and Lactobacillus acidophilus in the presence of yoghurt bacteria. International Dairy Journal, 9(8), 497–505. https://doi.org/10.1016/S0958-6946(99)00120-X
  • Yerlikaya, O. (2014). Effect of bee pollen supplement on antimicrobial, chemical, rheological, sensorial properties and probiotic viability of fermented milk beverages. Mljekarstvo, 64(4), 268–279. https://doi.org/10.15567/mljekarstvo.2014.0406
  • Yerlikaya, O., Saygili, D., & Akpinar, A. (2021). Evaluation of antimicrobial activity and antibiotic susceptibility profiles of Lactobacillus delbrueckii subsp. bulgaricus and streptococcus thermophilus strains isolated from commercial yoghurt starter cultures. Food Science and Technology, 41(2), 418–425. https://doi.org/10.1590/fst.03920
  • Yıldız, O., Can, Z., Saral, O., Yuluğ, E., Oztürk, F., Aliyazıcıoğlu, R., Canpolat, S., & Kolaylı, S. (2013). Hepatoprotective potential of chestnut bee pollen on carbon tetrachloride‐induced hepatic damages inrats. Evidence‐Based Complementary and Alternative Medicine, 2013, 1–9. https://doi.org/10.1155/2013/461478
  • Yılmaz, L. (2006). The use of different probiotic culture combinations in production of yoghurt-like fermented dairy products [ Doctoral thesis, Uludağ University].
  • Yilmaz-Ersan, L., & Kurdal, E. (2014). The production of set-type-bio-yoghurt with commercial probiotic culture. International Journal of Chemical Engineering and Applications, 5(5), 402. https://doi.org/10.7763/IJCEA.2014.V5.418
  • Ziar, H., Gérard, P., & Riazi, A. (2014). Effect of prebiotic carbohydrates on growth, bile survival and cholesterol uptake abilities of dairy‐related bacteria. Journal of the Science of Food and Agriculture, 94(6), 1184–1190. https://doi.org/10.1002/jsfa.6395
  • Zuluaga, C., Martínez, A., Fernández, J., López-Baldó, J., Quiles, A., & Rodrigo, D. (2016). Effect of high pressure processing on carotenoid and phenolic compounds, antioxidant capacity, and microbial counts of bee-pollen paste and bee-pollen-based beverage. Innovative Food Science & Emerging Technologies, 37, 10–17. https://doi.org/10.1016/j.ifset.2016.07.023