412
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Assessment of the whole genome sequencing of Lactiplantibacillus plantarum 13-3 for elucidation of novel bacteriocin producing gene cluster and confirmation of its potential probiotic functionality and safety applications

, , , , , , , , & show all
Article: 2329753 | Received 09 Oct 2023, Accepted 07 Mar 2024, Published online: 05 Apr 2024

References

  • Abdulkarim, I., Mohammed, S., & Orukotan, A. (2020). Gene identification for bacteriocin production by lactic acid bacteria isolated from selected fermented foods. Journal of Biochemistry, Molecular Biology, and Biophysics, 3, 1–10. https://doi.org/10.9734/ajbgmb/2020/v3i430090
  • Arndt, D., Grant, J. R., Marcu, A., Sajed, T., Pon, A., Liang, Y., & Wishart, D. S. (2016). PHASTER: A better, faster version of the PHAST phage search tool. Nucleic Acids Research, 44(W1), W16–W21. https://doi.org/10.1093/nar/gkw387
  • Aziz, T., Naveed, M., Jabeen, K., Shabbir, M. A., Sarwar, A., Zhennai, Y., Alharbi, M., Alshammari, A., & Alasmari, A. F. (2023). Integrated genome based evaluation of safety and probiotic characteristics of Lactiplantibacillus plantarum YW11 isolated from Tibetan kefir. Frontiers in Microbiology, 14, 1082. https://doi.org/10.3389/fmicb.2023.1157615
  • Aziz, T., Sarwar, A., Fahim, M., Al-Dalali, S., Din, Z. U., Din, J. U., Fill, T. P., & Yang, Z. (2020b). Conversion of linoleic acid to different fatty acid metabolites by Lactobacillus plantarum 13-3 and in silico characterization of the prominent reactions. Journal of the Chilean Chemical Society, 65(3), 4879–4884. https://doi.org/10.4067/s0717-97072020000204879
  • Aziz, T., Sarwar, A., Fahim, M., Al Dalali, S., Din, Z. U., Din, J. U., Xin, Z., Jian, Z., Fill, T. P., & Zhennai, Y. (2020a). In silico characterization of linoleic acid biotransformation to rumenic acid in food derived Lactobacillus plantarum YW11. Acta Biochimica Polonica, 67, 99–109. https://doi.org/10.18388/abp.2020_5095
  • Aziz, T., Sarwar, A., Fahim, M., Din, J. U., Al Dalali, S., Din, Z. U., Khan, A. A., Jian, Z., & Zhennai, Y. (2020c). Dose-dependent production of linoleic acid analogues in food derived Lactobacillus plantarum K25 and in silico characterization of relevant reactions. Acta Biochimica Polonica, 67, 123–129. https://doi.org/10.18388/abp.2020_5167
  • Aziz, T., Sarwar, A., Naveed, M., Shahzad, M., Shabbir, M. A., Dablool, A. S., Ud Din, J., Khan, A. A., Naz, S., & Cui, H. (2022). Bio-Molecular analysis of selected food derived Lactiplantibacillus strains for CLA production reveals possibly a complex mechanism. Food Research International, 154, 111031. https://doi.org/10.1016/j.foodres.2022.111031
  • Aziz, T., Sarwar, A., Ud Din, J., Al Dalali, S., Khan, A. A., Din, Z. U., & Yang, Z. (2021). Biotransformation of linoleic acid into different metabolites by food derived Lactobacillus plantarum 12-3 and in silico characterization of relevant reactions. Food Research International, 147, 110470. https://doi.org/10.1016/j.foodres.2021.110470
  • Boluk, G., Arizala, D., Dobhal, S., Zhang, J., Hu, J., Alvarez, A. M., & Arif, M. (2021). Genomic and phenotypic biology of novel strains of Dickeya zeae isolated from pineapple and taro in Hawaii: Insights into genome plasticity, pathogenicity, and virulence determinants. Frontiers in Plant Science, 12, 663851. https://doi.org/10.3389/fpls.2021.663851
  • Chambers, J., Sparks, N., Sydney, N., Livingstone, P. G., Cookson, A. R., & Whitworth, D. E. (2020). Comparative genomics and pan-genomics of the myxococcaceae, including a description of five novel species: Myxococcus eversor sp. nov., Myxococcus llanfairpwllgwyngyllgogerychwyrndrobwllllantysiliogogogochensis sp. nov., Myxococcus vastator sp. nov., Pyxidicoccus caerfyrddinensis sp. nov., and Pyxidicoccus trucidator sp. nov. Genome Biology and Evolution, 12(12), 2289–2302. https://doi.org/10.1093/gbe/evaa212
  • Churro, C., Pereira, P., Vasconcelos, V., & Valério, E. (2012). Species-specific real-time PCR cell number quantification of the bloom-forming cyanobacterium planktothrix agardhii. Archives of Microbiology, 194(9), 749–757. https://doi.org/10.1007/s00203-012-0809-y
  • De Simone, N., Rocchetti, M. T., la Gatta, B., Spano, G., Drider, D., Capozzi, V., Russo, P., & Fiocco, D. (2022). Antimicrobial properties, functional characterisation and application of Fructobacillus fructosus and Lactiplantibacillus plantarum isolated from artisanal honey. Probiotics and Antimicrobial Proteins, 15(5), 1–18. https://doi.org/10.1007/s12602-022-09988-4
  • Ding, W., Baumdicker, F., & Neher, R. A. (2018). PanX: Pan-genome analysis and exploration. Nucleic Acids Research, 46(1), e5–e5. https://doi.org/10.1093/nar/gkx977
  • Dronina, J., Samukaite-Bubniene, U., & Ramanavicius, A. (2022). Towards application of CRISPR-Cas12a in the design of modern viral DNA detection tools (review). Journal of Nanobiotechnology, 20(1), 1–15. https://doi.org/10.1186/s12951-022-01246-7
  • Gemayel, K., Lomsadze, A., & Borodovsky, M. (2022). MetaGeneMark-2: Improved gene prediction in metagenomes. bioRxiv, 2022.07.25.500264.
  • Jiang, Y., Zhang, J., Zhao, X., Zhao, W., Yu, Z., Chen, C., & Yang, Z. (2018). Complete genome sequencing of exopolysaccharide-producing Lactobacillus plantarum K25 provides genetic evidence for the probiotic functionality and cold endurance capacity of the strain. Bioscience, Biotechnology, and Biochemistry, 82(7), 1225–1233. https://doi.org/10.1080/09168451.2018.1453293
  • Li, K., Wang, S., Liu, W., Kwok, L.-Y., Bilige, M., & Zhang, W. (2022). Comparative genomic analysis of 455 Lactiplantibacillus plantarum isolates: Habitat-specific genomes shaped by frequent recombination. Food Microbiology, 104, 103989. https://doi.org/10.1016/j.fm.2022.103989
  • Mao, B., Yin, R., Li, X., Cui, S., Zhang, H., Zhao, J., & Chen, W. (2021). Comparative genomic analysis of Lactiplantibacillus plantarum isolated from different niches. Genes, 12(2), 241. https://doi.org/10.3390/genes12020241
  • Meier-Kolthoff, J. P., Carbasse, J. S., Peinado-Olarte, R. L., & Göker, M. (2022). TYGS and LPSN: A database tandem for fast and reliable genome-based classification and nomenclature of prokaryotes. Nucleic Acids Research, 50(D1), D801–D807. https://doi.org/10.1093/nar/gkab902
  • Min, Z., Xiaona, H., Aziz, T., Jian, Z., & Zhennai, Y. (2020). Exopolysaccharides from Lactobacillus plantarum YW11 improve immune response and ameliorate inflammatory bowel disease symptoms. Acta Biochimica Polonica, 67, 485–493. https://doi.org/10.18388/abp.2020_5171
  • Ning, W., Wei, Y., Gao, L., Han, C., Gou, Y., Fu, S., Liu, D., Zhang, C., Huang, X., Wu, S., Peng, D., Wang, C., & Xue, Y. (2022). HemI 2.0: An online service for heatmap illustration. Nucleic Acids Research, 50(W1), W405–W411. https://doi.org/10.1093/nar/gkac480
  • Nordström, E. A., Teixeira, C., Montelius, C., Jeppsson, B., & Larsson, N. (2021). Lactiplantibacillus plantarum 299v (LP299V®): Three decades of research. Beneficial Microbes, 12(5), 441–465. https://doi.org/10.3920/BM2020.0191
  • Olson, R. D., Assaf, R., Brettin, T., Conrad, N., Cucinell, C., Davis, J. J., Dempsey, D. M., Dickerman, A., Dietrich, E. M., Kenyon, R. W., Kuscuoglu, M., Lefkowitz, E. J., Lu, J., Machi, D., Macken, C., Mao, C., Niewiadomska, A., Nguyen, M., Olsen, G. J., & Stevens, R. L. (2022). Introducing the bacterial and viral bioinformatics resource center (BV-BRC): A resource combining Patric, IRD and ViPR. Nucleic Acids Research, 51(D1, D678–D689. https://doi.org/10.1093/nar/gkac1003
  • Olson, R. D., Assaf, R., Brettin, T., Conrad, N., Cucinell, C., Davis, J. J., Dempsey, D. M., Dickerman, A., Dietrich, E. M., Kenyon, R. W., Kuscuoglu, M., Lefkowitz, E., Lu, J., Machi, D., Macken, C., Mao, C., Niewiadomska, A., Nguyen, M., & Scheuermann, R. (2023). Introducing the bacterial and viral bioinformatics resource center (BV-BRC): A resource combining PATRIC, IRD and ViPR. Nucleic Acids Research, 51(D1), D678–D689. https://doi.org/10.1093/nar/gkac1003
  • Richter, M., Rosselló-Móra, R., Oliver Glöckner, F., & Peplies, J. (2016). JSpeciesWS: A web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics, 32(6), 929–931. https://doi.org/10.1093/bioinformatics/btv681
  • Surve, S., Shinde, D. B., & Kulkarni, R. (2022). Isolation, characterization and comparative genomics of potentially probiotic Lactiplantibacillus plantarum strains from Indian foods. Scientific Reports, 12(1), 1940. https://doi.org/10.1038/s41598-022-05850-3
  • Suryaletha, K., Savithri, A. V., Nayar, S. A., Asokan, S., Rajeswary, D., & Thomas, S. (2022). Demystifying bacteriocins of human microbiota by genome guided prospects: An impetus to rekindle the antimicrobial research. Current Protein and Peptide Science, 23(12), 811–822. https://doi.org/10.2174/1389203724666221019111515
  • Syaputri, Y., Lei, J., Hasegawa, T., Fauzia, S., Ratningsih, N., Erawan, T. S., & Iwahashi, H. (2023). Characterization of plantaricin genes and lactic acid production by Lactiplantibacillus plantarum strains isolated from Ishizuchi-Kurocha. Applied Food Biotechnology, 10(1), 21–31. https://doi.org/10.22037/afb.v10i1.39166
  • Tenea, G. N. (2022). Decoding the gene variants of two native probiotic Lactiplantibacillus plantarum strains through whole-genome resequencing: Insights into bacterial adaptability to stressors and antimicrobial strength. Genes, 13(3), 443. https://doi.org/10.3390/genes13030443
  • Trimble, W. L., Keegan, K. P., D’Souza, M., Wilke, A., Wilkening, J., Gilbert, J., & Meyer, F. (2012). Short-read reading-frame predictors are not created equal: Sequence error causes loss of signal. BMC Bioinformatics, 13(1), 1–10. https://doi.org/10.1186/1471-2105-13-183
  • Villena, J., Li, C., Vizoso-Pinto, M. G., Sacur, J., Ren, L., & Kitazawa, H. (2021). Lactiplantibacillus plantarum as a potential adjuvant and delivery system for the development of SARS-CoV-2 oral vaccines. Microorganisms, 9(4), 683. https://doi.org/10.3390/microorganisms9040683
  • Volpiano, C. G., Sant’anna, F. H., da Mota, F. F., Sangal, V., Sutcliffe, I., Munusamy, M., Saravanan, V. S., See-Too, W.-S., Passaglia, L. M. P., & Rosado, A. S. (2021). Proposal of carbonactinosporaceae fam. nov. within the class actinomycetia. Reclassification of Streptomyces thermoautotrophicus as carbonactinospora thermoautotrophica gen. nov., comb. nov. Systematic and Applied Microbiology, 44(4), 126223. https://doi.org/10.1016/j.syapm.2021.126223
  • Wu, H., Chen, X., Zhang, M., Wang, X., Chen, Y., Qian, C., Wu, J., & Xu, J. (2021). Versatile detection with CRISPR/Cas system from applications to challenges. TrAc Trends in Analytical Chemistry, 135, 116150. https://doi.org/10.1016/j.trac.2020.116150
  • Yilmaz, B., Bangar, S. P., Echegaray, N., Suri, S., Tomasevic, I., Manuel Lorenzo, J., Melekoglu, E., Rocha, J. M., & Ozogul, F. (2022). The impacts of Lactiplantibacillus plantarum on the functional properties of fermented foods: A review of current knowledge. Microorganisms, 10(4), 826. https://doi.org/10.3390/microorganisms10040826
  • Zhang, J., Zhao, W., Guo, X., Guo, T., Zheng, Y., Wang, Y., Hao, Y., & Yang, Z. (2017). Survival and effect of exopolysaccharide-producing Lactobacillus plantarum YW11 on the physicochemical properties of ice cream. Polish Journal of Food and Nutrition Sciences, 67(3), 191–200. https://doi.org/10.1515/pjfns-2017-0002
  • Zhao, Y., Zhang, M., & Yang, D. (2022). Bioinformatics approaches to analyzing CRISPR screen data: From dropout screens to single-cell CRISPR screens. Quantitative Biology, 10(4), 307. https://doi.org/10.15302/J-QB-022-0299