554
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Unveiling the importance role of lutein-plant-based nanoencapsulation – a future effort to improve their stability and bioaccessibility in combating ocular melanoma

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, , , ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Article: 2331070 | Received 02 Jan 2024, Accepted 11 Mar 2024, Published online: 05 Apr 2024

References

  • Abdel-Aal, E. S. M., Akhtar, H., Zaheer, K., & Ali, R. (2013). Dietary sources of lutein and zeaxanthin carotenoids and their role in eye health. Nutrients, 5(4), 1169–11. MDPI AG. https://doi.org/10.3390/nu5041169
  • Ahmad, F. T., Asenstorfer, R. E., Soriano, I. R., & Mares, D. J. (2013). Effect of temperature on lutein esterification and lutein stability in wheat grain. Journal of Cereal Science, 58(3), 408–413. https://doi.org/10.1016/j.jcs.2013.08.004
  • Algan, A. H., Gungor-Ak, A., & Karatas, A. (2022). Nanoscale delivery systems of lutein: An updated review from a pharmaceutical perspective. Pharmaceutics, 14(9), 1852. Multidisciplinary Digital Publishing Institute. https://doi.org/10.3390/pharmaceutics14091852
  • Ali, H., Al-Khalifa, A. R., Aouf, A., Boukhebti, H., & Farouk, A. (2020). Effect of nanoencapsulation on volatile constituents, and antioxidant and anticancer activities of Algerian Origanum glandulosum Desf. essential oil. Scientific Reports, 10(1), 1–9. https://doi.org/10.1038/s41598-020-59686-w
  • Balasubramaniam, V., June Chelyn, L., Vimala, S., Mohd Fairulnizal, M. N., Brownlee, I. A., & Amin, I. (2020). Carotenoid composition and antioxidant potential of Eucheuma denticulatum, Sargassum polycystum and Caulerpa lentillifera. Heliyon, 6(8), e04654. https://doi.org/10.1016/j.heliyon.2020.e04654
  • Belyagoubi, L., Belyagoubi-Benhammou, N., Atik-Bekkara, F., & Abdelouahid, D. E. (2022). Influence of harvest season and different polarity solvents on biological activities, phenolic compounds and lipid-soluble pigment contents of Spirogyra sp. from Algeria. Advances in Traditional Medicine, 22(2), 359–369. https://doi.org/10.1007/s13596-021-00551-0
  • Bi, M.-C., Hose, N., Xu, C.-L., Zhang, C., Sassoon, J., & Song, E. (2016). Nonlethal levels of zeaxanthin inhibit cell migration, invasion, and secretion of MMP-2 via NF-κB pathway in cultured human uveal melanoma cells. Journal of Ophthalmology, 2016, 1–8. https://doi.org/10.1155/2016/8734309
  • Boudreau, M. W., Peh, J., & Hergenrother, P. J. (2019). Procaspase-3 overexpression in cancer: A paradoxical observation with therapeutic potential. ACS Chemical Biology, 14(11), 2335–2348. https://doi.org/10.1021/acschembio.9b00338
  • Brentnall, M., Rodriguez-Menocal, L., De Guevara, R. L., Cepero, E., & Boise, L. H. (2013). Caspase-9, caspase-3 and caspase-7 have distinct roles during intrinsic apoptosis. BMC Cell Biology, 14(1), 32. https://doi.org/10.1186/1471-2121-14-32
  • Buscemi, S., Corleo, D., DiPace, F., Petroni, M. L., Satriano, A., & Marchesini, G. (2018). The effect of lutein on eye and extra-eye health. Nutrients, 10(9). https://doi.org/10.3390/nu10091321
  • Chandel, N. S., McClintock, D. S., Feliciano, C. E., Wood, T. M., Melendez, J. A., Rodriguez, A. M., & Schumacker, P. T. (2000). Reactive Oxygen Species Generated at Mitochondrial Complex III Stabilize Hypoxia-inducible Factor-1α during Hypoxia: A mechanism of O2 sensing*. Journal of Biological Chemistry, 275(33), 25130–25138. https://doi.org/10.1074/jbc.M001914200
  • Chew, B. P., Brown, C. M., Park, J. S., & Mixter, P. F. (2003). Dietary lutein inhibits mouse mammary tumor growth by regulating angiogenesis and apoptosis. Anticancer Research, 23(4), 3333–3339.
  • Chew, E. Y., Clemons, T. E., Agrón, E., Domalpally, A., Keenan, T. D. L., Vitale, S., Weber, C., Smith, D. C., Christen, W., SanGiovanni, J. P., Ferris, F. L., Danis, R. P., Blodi, B. A., Ruby, A. J., Antoszyk, A., Klein, M., Kim, I., Fish, G. E. & DiLoreto, D. (2022). Long-term outcomes of adding lutein/zeaxanthin and ω-3 fatty acids to the AREDS supplements on age-related macular degeneration progression: AREDS2 report 28. JAMA Ophthalmology, 140(7), 692–698. https://doi.org/10.1001/jamaophthalmol.2022.1640
  • Ciccone, M. M., Cortese, F., Gesualdo, M., Carbonara, S., Zito, A., Ricci, G., De Pascalis, F., Scicchitano, P., & Riccioni, G. (2013). Dietary intake of carotenoids and their antioxidant and anti-inflammatory effects in cardiovascular care. Mediators of Inflammation, 2013, 1–11. Hindawi Publishing Corporation. https://doi.org/10.1155/2013/782137
  • Clowutimon, W., Shotipruk, A., Boonnoun, P., & Ponpesh, P. (2018). Development of mass transfer model for chromatographic separation of free lutein and fatty acids in de-esterified marigold lutein. Food and Bioproducts Processing, 110, 6–15. https://doi.org/10.1016/j.fbp.2018.04.003
  • Cornea-Cipcigan, M., Bunea, A., Bouari, C. M., Pamfil, D., Páll, E., Urcan, A. C., & Mărgăoan, R. (2022). Anthocyanins and carotenoids characterization in flowers and leaves of cyclamen genotypes linked with bioactivities using multivariate analysis techniques. Antioxidants, 11(6), 1126. https://doi.org/10.3390/antiox11061126
  • Cvitković, D., Lisica, P., Zorić, Z., Pedisić, S., Repajić, M., Dragović-Uzelac, V., & Balbino, S. (2022). The influence of cryogrinding on essential oil, phenolic compounds and pigments extraction from Myrtle (Myrtus communis L.) leaves. Processes, 10(12), 2716. https://doi.org/10.3390/pr10122716
  • Demmig-Adams, B., Polutchko, S. K., & Adams, W. W., III. (2022). Structure-function-environment relationship of the isomers zeaxanthin and lutein. Photochem, 2(2), 308–325. https://doi.org/10.3390/photochem2020022
  • Demmin, D. L., & Silverstein, S. M. (2020). Visual impairment and mental health: Unmet needs and treatment options. Clinical Ophthalmology, 14, 4229–4251. https://doi.org/10.2147/OPTH.S258783
  • Dharani, S., Ramalingam, P., Basavaraju, S., & Saraswathy, N. (2022). Extraction of lutein from targetes erecta using deep eutectic solvents. AIP Conference Proceedings, 2446. https://doi.org/10.1063/5.0110158
  • Enășescu, D. A., Moisescu, M. G., Imre, M., Greabu, M., Ripszky Totan, A., Stanescu-Spinu, I., Burcea, M., Albu, C., & Miricescu, D. (2021). Lutein treatment effects on the redox status and metalloproteinase-9 (MMP-9) in oral cancer squamous cells—are there therapeutical hopes? Materials, 14(11), 2968. https://doi.org/10.3390/ma14112968
  • Englmaierová, M., Skřivan, M., & Vít, T. (2019). Alfalfa meal as a source of carotenoids in combination with ascorbic acid in the diet of laying hens. Czech Journal of Animal Science, 64(1), 17–25. https://doi.org/10.17221/116/2018-CJAS
  • Eom, J. W., Lim, J. W., & Kim, H. (2023). Lutein induces reactive oxygen species-mediated apoptosis in gastric cancer AGS cells via NADPH oxidase activation. Molecules, 28(3), 1178. https://doi.org/10.3390/molecules28031178
  • Fukushima, Y., Taguchi, C., Kishimoto, Y., & Kondo, K. (2023). Japanese carotenoid database with α- and β-carotene, β-cryptoxanthin, lutein, zeaxanthin, lycopene, and fucoxanthin and intake in adult women. International Journal for Vitamin and Nutrition Research, 93(1), 42–53. https://doi.org/10.1024/0300-9831/a000707
  • Gansukh, E., Mya, K. K., Jung, M., Keum, Y.-S., Kim, D. H., & Saini, R. K. (2019). Lutein derived from marigold (tagetes erecta) petals triggers ROS generation and activates Bax and caspase-3 mediated apoptosis of human cervical carcinoma (HeLa) cells. Food and Chemical Toxicology, 127, 11–18. https://doi.org/10.1016/j.fct.2019.02.037
  • Georgiopoulou, I., Tzima, S., Louli, V., & Magoulas, K. (2022). Supercritical CO2 extraction of high-added value compounds from chlorella vulgaris: Experimental design, modelling and optimization. Molecules, 27(18), 5884. https://doi.org/10.3390/molecules27185884
  • Georgiopoulou, I., Tzima, S., Louli, V., & Magoulas, K. (2023). Process optimization of microwave-assisted extraction of chlorophyll, carotenoid and phenolic compounds from chlorella vulgaris and comparison with conventional and supercritical fluid extraction. Applied Sciences, 13(4), 2740. https://doi.org/10.3390/app13042740
  • González, I. A., Osorio, C., Meléndez-Martínez, A. J., González-Miret, M. L., & Heredia, F. J. (2011). Application of tristimulus colorimetry to evaluate colour changes during the ripening of Colombian guava (Psidium guajava L.) varieties with different carotenoid pattern. International Journal of Food Science & Technology, 46(4), 840–848. https://doi.org/10.1111/j.1365-2621.2011.02569.x
  • Granado-Lorencio, F., Herrero-Barbudo, C., Olmedilla-Alonso, B., Blanco-Navarro, I., & Pérez-Sacristán, B. (2010). Lutein bioavailability from lutein ester-fortified fermented milk: In vivo and in vitro study. The Journal of Nutritional Biochemistry, 21(2), 133–139. https://doi.org/10.1016/j.jnutbio.2008.12.002
  • Granado-Lorencio, F., Olmedilla-Alonso, B., Herrero-Barbudo, C., Pérez-Sacristán, B., Blanco-Navarro, I., & Blázquez-García, S. (2007). Comparative in vitro bioaccessibility of carotenoids from relevant contributors to carotenoid intake. Journal of Agricultural and Food Chemistry, 55(15), 6387–6394. https://doi.org/10.1021/jf070301t
  • Jain, A., & Sirisha, V. L. (2020). Algal Carotenoids. Encyclopedia of Marine Biotechnology, 33–64. John Wiley & Sons, Ltd. https://doi.org/10.1002/9781119143802.ch2
  • Jovanovic, P., Mihajlovic, M., Djordjevic-Jocic, J., Vlajkovic, S., Cekic, S., & Stefanovic, V. (2013). Ocular melanoma: An overview of the current status. International Journal of Clinical and Experimental Pathology, 6(7), 1230–1244. e-Century Publishing Corporation. /pmc/articles/PMC3693189/
  • Kamil, A., Smith, D. E., Blumberg, J. B., Astete, C., Sabliov, C., & Oliver Chen, C.-Y. (2016). Bioavailability and biodistribution of nanodelivered lutein. Food Chemistry, 192, 915–923. https://doi.org/10.1016/j.foodchem.2015.07.106
  • Kavalappa, Y. P., Gopal, S. S., & Ponesakki, G. (2021). Lutein inhibits breast cancer cell growth by suppressing antioxidant and cell survival signals and induces apoptosis. Journal of Cellular Physiology, 236(3), 1798–1809. https://doi.org/10.1002/jcp.29961
  • Khalil, M., Raila, J., Ali, M., Islam, K. M. S., Schenk, R., Krause, J.-P., Schweigert, F. J., & Rawel, H. (2012). Stability and bioavailability of lutein ester supplements from tagetes flower prepared under food processing conditions. Journal of Functional Foods, 4(3), 602–610. https://doi.org/10.1016/j.jff.2012.03.006
  • Kim, J., Lee, J., Oh, J. H., Chang, H. J., Sohn, D. K., Kwon, O., Shin, A., & Kim, J. (2019). Dietary lutein plus zeaxanthin intake and DICER1 rs3742330 a > G polymorphism relative to colorectal cancer risk. Scientific Reports, 9(1). https://doi.org/10.1038/s41598-019-39747-5
  • Kline, M. A., Duncan, S. E., Bianchi, L. M., Eigel William Nicholas, I. I. I., & O’Keefe, S. F. (2011). Light wavelength effects on a lutein-fortified model colloidal beverage. Journal of Agricultural and Food Chemistry, 59(13), 7203–7210. https://doi.org/10.1021/jf200740c
  • Koraneeyakijkulchai, I., Phumsuay, R., Thiyajai, P., Tuntipopipat, S., & Muangnoi, C. (2023). Anti-inflammatory activity and mechanism of sweet corn extract on il-1β-induced inflammation in a human retinal pigment epithelial cell line (ARPE-19). International Journal of Molecular Sciences, 24(3), 2462. https://doi.org/10.3390/ijms24032462
  • Lakshminarayana, R., Sathish, U. V., Dharmesh, S. M., & Baskaran, V. (2010). Antioxidant and cytotoxic effect of oxidized lutein in human cervical carcinoma cells (HeLa). Food and Chemical Toxicology, 48(7), 1811–1816. https://doi.org/10.1016/j.fct.2010.04.011
  • Lehmann, M., Vamvaka, E., Torrado, A., Jahns, P., Dann, M., Rosenhammer, L., Aziba, A., Leister, D., & Rühle, T. (2021). Introduction of the carotenoid biosynthesis α-branch into Synechocystis sp. PCC 6803 for lutein production. Frontiers in Plant Science, 12, 699424. https://doi.org/10.3389/fpls.2021.699424
  • Li, J., & Abdel‐Aal, E. S. M. (2021). Dietary lutein and cognitive function in adults: A meta‐analysis of randomized controlled trials. Molecules, 26(19), 5794. https://doi.org/10.3390/molecules26195794
  • Li, Y., Zhang, Y., Liu, X., Wang, M., Wang, P., Yang, J., & Zhang, S. (2018). Lutein inhibits proliferation, invasion and migration of hypoxic breast cancer cells via downregulation of HES1. International Journal of Oncology, 52(6), 2119–2129. https://doi.org/10.3892/ijo.2018.4332
  • Li, Y., Zhao, Y., Zhang, H., Ding, Z., & Han, J. (2024). The application of natural carotenoids in multiple fields and their encapsulation technology: A review. Molecules, 29(5), 967. https://doi.org/10.3390/MOLECULES29050967
  • Liang, Z., Zhang, P., Xiong, Y., Johnson, S. K., & Fang, Z. (2023). Phenolic and carotenoid characterization of the ethanol extract of an Australian native plant haemodorum spicatum. Food Chemistry, 399, 133969. https://doi.org/10.1016/j.foodchem.2022.133969
  • Liu, Z.-F., Wu, F.-X., Wang, L.-P., Wang, M.-C., & Fu, L. (2016). Lutein suppresses cell proliferation in human colon cancer cell line HT29 via Nrf-2/ARE signal transduction pathway. World Chinese Journal of Digestology, 24(6), 858–865. https://doi.org/10.11569/wcjd.v24.i6.858
  • Loughman, J., Loskutova, E., Butler, J. S., Siah, W. F., & O’Brien, C. (2021). Macular pigment response to lutein, zeaxanthin, and meso-zeaxanthin supplementation in open-angle glaucoma: A randomized controlled trial. Ophthalmology Science, 1(3), 100039. https://doi.org/10.1016/j.xops.2021.100039
  • Luan, R.-L., Wang, P.-C., Yan, M.-X., & Chen, J. (2021). Effect of lutein and doxorubicin combinatorial therapy on S180 cell proliferation and tumor growth. European Review for Medical and Pharmacological Sciences, 22(5), 1514–1520. https://doi.org/10.26355/eurrev_201803_14501
  • Luo, S., Zhang, Y., Song, J., Li, Y., Wu, C., & Zhang, C. (2024). Solubility-permeability interplay of a supersaturated lutein delivery system constructed by glycosylated stevioside and hydroxypropyl-methylcellulose. International Journal of Biological Macromolecules, 258, 128791. https://doi.org/10.1016/j.ijbiomac.2023.128791
  • Machida, N., Kosehira, M., & Kitaichi, N. (2020). Clinical effects of dietary supplementation of lutein with high bio-accessibility on macular pigment optical density and contrast sensitivity: A randomized double-blind placebo-controlled parallel-group comparison trial. Nutrients, 12(10), 1–12. https://doi.org/10.3390/nu12102966
  • Maheshwari, N., Arya, R. K., Verros, G. D., Dhamole, P. B., & Kannan, A. (2023). Surfactant-enhanced extraction of lutein from marigold petals using an aqueous two-phase system. Separations, 10(2), 133. https://doi.org/10.3390/separations10020133
  • Maiani, G., Periago Castón, M. J., Catasta, G., Toti, E., Cambrodón, I. G., Bysted, A., Granado-Lorencio, F., Olmedilla-Alonso, B., Knuthsen, P., Valoti, M., Böhm, V., Mayer-Miebach, E., Behsnilian, D., & Schlemmer, U. (2009). Carotenoids: Actual knowledge on food sources, intakes, stability and bioavailability and their protective role in humans. Molecular Nutrition & Food Research, 53(S2), S194–S218. https://doi.org/10.1002/mnfr.200800053
  • Marlina, I., Saleha, M., Fathurrahmi, S., Maulina, F. P., & Idroes, R. (2020). Polyurethane film prepared from ball-milled algal polyol particle and activated carbon filler for NH3–N removal. Heliyon, 6(8), e04590. https://doi.org/10.1016/j.heliyon.2020.e04590
  • Martínez-Delgado, A. A., Khandual, S., & Villanueva–Rodríguez, S. J. (2017). Chemical stability of astaxanthin integrated into a food matrix: Effects of food processing and methods for preservation. Food Chemistry, 225, 23–30. https://doi.org/10.1016/j.foodchem.2016.11.092
  • Maswanna, T., & Maneeruttanarungroj, C. (2022). Identification of major carotenoids from green alga Tetraspora sp. CU2551: Partial purification and characterization of lutein, canthaxanthin, neochrome, and β-carotene. World Journal of Microbiology and Biotechnology, 38(8), 129. https://doi.org/10.1007/s11274-022-03320-6
  • Mohammadnezhad, P., Valdés, A., & Álvarez-Rivera, G. (2023). Bioactivity of food by-products: An updated insight. In Current opinion in food science (Vol. 52, p. 101065). Elsevier. https://doi.org/10.1016/j.cofs.2023.101065
  • Mordi, R. C., Ademosun, O. T., Ajanaku, C. O., Olanrewaju, I. O., & Walton, J. C. (2020). Free radical mediated oxidative degradation of carotenes and xanthophylls. Molecules, 25(5), 1038. Multidisciplinary Digital Publishing Institute. https://doi.org/10.3390/molecules25051038
  • Nouchi, R., Suiko, T., Kimura, E., Takenaka, H., Murakoshi, M., Uchiyama, A., Aono, M., & Kawashima, R. (2020). Effects of lutein and astaxanthin intake on the improvement of cognitive functions among healthy adults: A systematic review of randomized controlled trials. Nutrients, 12(3), 617. Multidisciplinary Digital Publishing Institute. https://doi.org/10.3390/nu12030617
  • Ochoa Becerra, M., Mojica Contreras, L., Hsieh Lo, M., Mateos Díaz, J., & Castillo Herrera, G. (2020). Lutein as a functional food ingredient: Stability and bioavailability. Journal of Functional Foods, 66, 103771. https://doi.org/10.1016/j.jff.2019.103771
  • Ola, M. S., Nawaz, M., & Ahsan, H. (2011). Role of Bcl-2 family proteins and caspases in the regulation of apoptosis. Molecular and Cellular Biochemistry, 351(1), 41–58. https://doi.org/10.1007/s11010-010-0709-x
  • Omar, W. M., Ahmed, A. E., Raslan, M., El-Nesr, K., Ali, M. M., De Abdelmaksoud, M., & El Dahshan, D. (2021). Effect of lutein-rich extract on human cancer cells. Middle East Journal of Cancer, 12(1), 147–150.
  • Ova, O. D., Ata, A., & Ovez, B. (2022). Identification of photosynthetic pigments extracted from phaeodactylum tricornutum as high-value bioactive compounds. Research Journal of Biotechnology, 17(12), 91–99. https://doi.org/10.25303/1712rjbt91099
  • Pateiro, M., Gómez, B., Munekata, P. E. S., Barba, F. J., Putnik, P., Kovačević, D. B., & Lorenzo, J. M. (2021). Nanoencapsulation of promising bioactive compounds to improve their absorption, stability, functionality and the appearance of the final food products. Molecules, 26(6), 1547. Multidisciplinary Digital Publishing Institute. https://doi.org/10.3390/molecules26061547
  • Patel, A. K., Vadrale, A. P., Tseng, Y.-S., Chen, C.-W., Dong, C.-D., & Singhania, R. R. (2022). Bioprospecting of marine microalgae from Kaohsiung Seacoast for lutein and lipid production. Bioresource Technology, 351, 126928. https://doi.org/10.1016/j.biortech.2022.126928
  • Pietro, D., Tomo, D. D., & Pandolfi, P. (2016). Carotenoids in cardiovascular disease prevention. JSM Atheroscler, 1(1). https://doi.org/10.13140/RG.2.1.2635.9921
  • Rafi, M. M., Kanakasabai, S., Gokarn, S. V., Krueger, E. G., & Bright, J. J. (2015). Dietary lutein modulates growth and survival genes in prostate cancer cells. Journal of Medicinal Food, 18(2), 173–181. https://doi.org/10.1089/jmf.2014.0003
  • Ravichandran, R. (2010). Nanotechnology applications in food and food processing: Innovative green approaches, opportunities and uncertainties for global market. International Journal of Green Nanotechnology: Physics and Chemistry, 1(2), P72–P96. Taylor & Francis Group. https://doi.org/10.1080/19430871003684440
  • Roberts, J. E., & Dennison, J. (2015). The photobiology of lutein and zeaxanthin in the eye. Journal of Ophthalmology, 2015, 1–8. https://doi.org/10.1155/2015/687173
  • Ruiling, D. (2019). Lutein regulates proliferation and apoptosis of gastric cancer stem cells through PI3K/Akt signaling pathway. Chinese Journal of Tissue Engineering Research, 23(29), 4593–4598. https://doi.org/10.3969/j.issn.2095-4344.1810
  • Ruiz-Domínguez, M. C., Medina, E., Salinas, F., Bugueño, W., Fuentes, J.-L., Vílchez, C., Garbayo, I., & Cerezal-Mezquita, P. (2022). Methodological optimization of supercritical fluid extraction of valuable bioactive compounds from the acidophilic microalga Coccomyxa onubensis. Antioxidants, 11(7), 1248. https://doi.org/10.3390/antiox11071248
  • Savvidou, M. G., Tsiaka, T., Zoumpoulakis, P., Maggiorou, E., Tyrovolas, K., Molino, A., Hristoforou, E., & Ferraro, A. (2022). Separation and concentration of astaxanthin and lutein from microalgae liquid extracts using magnetic nanoparticles. Magnetochemistry, 8(8), 80. https://doi.org/10.3390/magnetochemistry8080080
  • Sawasdee, N., Jantakee, K., Wathikthinnakon, M., Panwong, S., Pekkoh, J., Duangjan, K., Yenchitsomanus, P., & Panya, A. (2023). Microalga Chlorella sp. extract induced apoptotic cell death of cholangiocarcinoma via AKT/mTOR signaling pathway. Biomedicine & Pharmacotherapy, 160, 114306. https://doi.org/10.1016/j.biopha.2023.114306
  • Schnebelen-Berthier, C., Acar, N., Simon, E., Thabuis, C., Bourdillon, A., Mathiaud, A., Dauchet, L., Delcourt, C., Benlian, P., Crochet, M., Defoort, S., Tailleux, A., Staels, B., Bretillon, L., & Lecerf, J. M. (2021). The algovue clinical trial: Effects of the daily consumption of eggs enriched with lutein and docosahexaenoic acid on plasma composition and macular pigment optical density. Nutrients, 13(10), 3347. https://doi.org/10.3390/nu13103347
  • Shaikh, A. A., Ray, A., & Singhal, R. S. (2023). Co-extraction of marigold flowers (Tagetes erecta L.) and dried coconut (Cocos nucifera L.) shreds using supercritical carbon dioxide: Characterization and functional food formulations. Food Chemistry Advances, 2, 100189. https://doi.org/10.1016/j.focha.2023.100189
  • Tahir, A., Shabir Ahmad, R., Imran, M., Ahmad, M. H., Kamran Khan, M., Muhammad, N., Nisa, M. U., Tahir Nadeem, M., Yasmin, A., Tahir, H. S., Zulifqar, A., & Javed, M. (2021). Recent approaches for utilization of food components as nano-encapsulation: A review. International Journal of Food Properties, 24(1), 1074–1096. Taylor & Francis. https://doi.org/10.1080/10942912.2021.1953067
  • Tedros Adhanom Ghebreyesus. (2019). World report on vision. World Health Organisation, 214(14). https://www.who.int/publications/i/item/9789241516570
  • Toragall, V., Srirangam, P., Jayapala, N., & Baskaran, V. (2021). Lutein encapsulated oleic - linoleic acid nanoemulsion boosts oral bioavailability of the eye protective carotenoid lutein in rat model. Materials Today Communications, 28, 102522. https://doi.org/10.1016/j.mtcomm.2021.102522
  • Vasconcelos, A. G., Valim, M. O., Amorim, A. G. N., Do Amaral, C. P., de Almeida, M. P., Borges, T. K. S., Socodato, R., Portugal, C. C., Brand, G. D., Mattos, J. S. C., Relvas, J., Plácido, A., Eaton, P., Ramos, D. A. R., Kückelhaus, S. A. S., & Leite, J. R. S. A. (2020). Cytotoxic activity of poly-ε-caprolactone lipid-core nanocapsules loaded with lycopene-rich extract from red guava (Psidium guajava L.) on breast cancer cells. Food Research International, 136, 109548. https://doi.org/10.1016/j.foodres.2020.109548
  • Vieira, I. R. S., & Conte-Junior, C. A. (2022). Nano-delivery systems for food bioactive compounds in cancer: Prevention, therapy, and clinical applications. Critical Reviews in Food Science and Nutrition, Taylor & Francis. https://doi.org/10.1080/10408398.2022.2106471
  • Vlaicu, P. A., Untea, A. E., Varzaru, I., Saracila, M., & Oancea, A. G. (2023). Designing nutrition for health—incorporating dietary by-products into poultry feeds to create functional foods with insights into health benefits, risks, bioactive compounds, food component functionality and safety regulations. Foods, 12(21), 4001. Multidisciplinary Digital Publishing Institute. https://doi.org/10.3390/foods12214001
  • Wang, M., Morón-Ortiz, Á., Zhou, J., Benítez-González, A., Mapelli-Brahm, P., Meléndez-Martínez, A. J., & Barba, F. J. (2023). Effects of pressurized liquid extraction with dimethyl sulfoxide on the recovery of carotenoids and other dietary valuable compounds from the microalgae spirulina, chlorella and phaeodactylum tricornutum. Food Chemistry, 405, 134885. https://doi.org/10.1016/j.foodchem.2022.134885
  • Xavier, A. A. O., Carvajal-Lérida, I., Garrido-Fernández, J., & Pérez-Gálvez, A. (2018). In vitro bioaccessibility of lutein from cupcakes fortified with a water-soluble lutein esters formulation. Journal of Food Composition and Analysis, 68, 60–64. https://doi.org/10.1016/j.jfca.2017.01.015
  • Xu, X. L., Hu, D.-N., Iacob, C., Jordan, A., Gandhi, S., Gierhart, D. L., & Rosen, R. (2015). Effects of zeaxanthin on growth and invasion of human uveal melanoma in nude mouse model. Journal of Ophthalmology, 2015, 1–8. https://doi.org/10.1155/2015/392305
  • Yamagata, K., Fujiwara, A., Onodera, D., & Motoki, T. (2017). Lutein regulates the expression of apoptosis-related genes and stem cell markers in A549 human lung cancer cells. Natural Product Communications, 12(6), X19345781701200616–X19345781701200616. https://doi.org/10.1177/1934578X1701200616
  • Yi, J., He, Q., Peng, G., & Fan, Y. (2022). Improved water solubility, chemical stability, antioxidant and anticancer activity of resveratrol via nanoencapsulation with pea protein nanofibrils. Food Chemistry, 377, 131942. https://doi.org/10.1016/j.foodchem.2021.131942
  • Zaher, S., Soliman, M. E., Elsabahy, M., & Hathout, R. M. (2022). Protein nanoparticles as natural drugs carriers for cancer therapy. Advances in Traditional Medicine, 1–30. Springer. https://doi.org/10.1007/s13596-022-00668-w
  • Zhang, G., Zhang, M., Pei, Y., Qian, K., Xie, J., Huang, Q., Liu, S., Xue, N., Zu, Y., & Wang, H. (2023). Enhancing stability of liposomes using high molecular weight chitosan to promote antioxidative stress effects and lipid-lowering activity of encapsulated lutein in vivo and in vitro. International Journal of Biological Macromolecules, 253, 126564. https://doi.org/10.1016/j.ijbiomac.2023.126564
  • Zhang, S., Lu, Y., He, X., Su, Y., Hu, F., Wei, X., Pan, M., Zhou, Q., & Yang, W. (2022). Lutein inhibits tumor progression through the ATR/Chk1/p53 signaling pathway in non-small cell lung cancer. Phytotherapy Research, 37(4), 1260–1273. https://doi.org/10.1002/ptr.7682
  • Zhang, Y., Chang, J., Jiang, W., Ye, X., & Zhang, S. (2021). Long non‑coding RNA CASC9/microRNA‑590‑3p axis participates in lutein‑mediated suppression of breast cancer cell proliferation. Oncology Letters, 22(1), 1–8. https://doi.org/10.3892/ol.2021.12805