228
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Composting manure in the poultry farm harbours multidrug-resistance Salmonella

ORCID Icon, , , , , , , , & show all
Article: 2332405 | Received 11 Dec 2023, Accepted 13 Mar 2024, Published online: 29 Apr 2024

References

  • Abdelhamid, A. G., & Yousef, A. E. (2020). Collateral adaptive responses induced by desiccation stress in Salmonella enterica. LWT, 133, 110089. https://doi.org/10.1016/j.lwt.2020.110089
  • Akinola, S. A., Mwanza, M., & Ateba, C. N. (2019). Occurrence, genetic diversities and antibiotic resistance profiles of Salmonella serovars isolated from chickens. Infection and Drug Resistance, 12, 3327–7. https://doi.org/10.2147/IDR.S217421
  • Andoh, L. A., Dalsgaard, A., Obiri-Danso, K., Newman, M. J., Barco, L., & Olsen, J. E. (2016). Prevalence and antimicrobial resistance of Salmonella serovars isolated from poultry in Ghana. Epidemiology & Infection, 144(15), 3288–3299. https://doi.org/10.1017/S0950268816001126
  • Barreto, M., Castillo-Ruiz, M., & Retamal, P. (2016). Salmonella enterica: A review or the trilogy agent, host and environment and its importance in Chile. Revista chilena de infectologia: organo oficial de la Sociedad Chilena de Infectologia, 33(5), 547–557. https://doi.org/10.4067/S0716-10182016000500010
  • Castro-Vargas, R. E., Herrera-Sánchez, M. P., Rodríguez-Hernández, R., & Rondón-Barragán, I. S. (2020). Antibiotic resistance in Salmonella spp. isolated from poultry: A global overview. Veterinary World, 13(10), 2070. https://doi.org/10.14202/vetworld.2020.2070-2084
  • Chang, M.-X., Zhang, J.-F., Sun, Y.-H., Li, R.-S., Lin, X.-L., Yang, L., Webber, M. A., & Jiang, H.-X. (2021). Contribution of different mechanisms to ciprofloxacin resistance in Salmonella spp [Original research]. Frontiers in Microbiology, 12, 12. https://doi.org/10.3389/fmicb.2021.663731
  • Coburn, B., Grassl, G. A., & Finlay, B. (2007). Salmonella, the host and disease: A brief review. Immunology and Cell Biology, 85(2), 112–118. https://doi.org/10.1038/sj.icb.7100007
  • Gantois, I., Ducatelle, R., Pasmans, F., Haesebrouck, F., Gast, R., Humphrey, T. J., & Van Immerseel, F. (2009). Mechanisms of egg contamination by Salmonella Enteritidis. FEMS Microbiology Reviews, 33(4), 718–738. https://doi.org/10.1111/j.1574-6976.2008.00161.x
  • Giaouris, E., Chorianopoulos, N., Skandamis, P., & Nychas, G.-J. (2012). Attachment and biofilm formation by Salmonella in food processing environments. Salmonella: A Dangerous Foodborne Pathogen, 157–180.
  • Gibbons, E., Tamanna, M., Cherayil, B. J., & Steele-Mortimer, O. (2022). The rpoS gene confers resistance to low osmolarity conditions in Salmonella enterica serovar Typhi. PLoS One, 17(12), e0279372. https://doi.org/10.1371/journal.pone.0279372
  • Guéneau, V., Plateau-Gonthier, J., Arnaud, L., Piard, J.-C., Castex, M., & Briandet, R. (2022). Positive biofilms to guide surface microbial ecology in livestock buildings. Biofilm, 4, 100075. https://doi.org/10.1016/j.bioflm.2022.100075
  • Gutierrez, A., De, J., & Schneider, K. R. (2020). Prevalence, concentration, and antimicrobial resistance profiles of Salmonella isolated from Florida poultry litter. Journal of Food Protection, 83(12), 2179–2186. https://doi.org/10.4315/JFP-20-215
  • Hendriksen, R., Wagenaar, J., & Bergen, M. (2016). Global Salm-Surv. A global Salmonella surveillance and laboratory support project of the World Health Organization Level 2 training course: Isolation of thermotolerant Campylobacter from faeces; identification of thermotolerant Campylobacter.
  • Hussain, M. S., Kwon, M., Park, E.-J., Seheli, K., Huque, R., & Oh, D.-H. (2019). Disinfection of Bacillus cereus biofilms on leafy green vegetables with slightly acidic electrolyzed water, ultrasound and mild heat. LWT, 116, 108582. https://doi.org/10.1016/j.lwt.2019.108582
  • Islam, M., Islam, M., Sharifuzzaman, F. M., Rahman, M., Sharifuzzaman, J., Sarker, E., Shahiduzzaman, M., Mostofa, M., & Sharifuzzaman, M. (2014). Isolation and identification of Escherichia coli and Salmonella from poultry litter and feed. International Journal of Natural and Social Sciences, 1(1), 1–7.
  • Jones, R. M., Wu, H., Wentworth, C., Luo, L., Collier-Hyams, L., & Neish, A. S. (2008). Salmonella AvrA coordinates suppression of host immune and apoptotic defenses via JNK pathway blockade. Cell Host & Microbe, 3(4), 233–244. https://doi.org/10.1016/j.chom.2008.02.016
  • Kyakuwaire, M., Olupot, G., Amoding, A., Nkedi-Kizza, P., & Ateenyi Basamba, T. (2019). How safe is chicken litter for land application as an organic fertilizer? A review. International Journal of Environmental Research and Public Health, 16(19), 3521. https://doi.org/10.3390/ijerph16193521
  • Liao, X., Ma, Y., Daliri, E. B.-M., Koseki, S., Wei, S., Liu, D., Ye, X., Chen, S., & Ding, T. (2020). Interplay of antibiotic resistance and food-associated stress tolerance in foodborne pathogens. Trends in Food Science & Technology, 95, 97–106. https://doi.org/10.1016/j.tifs.2019.11.006
  • Li, Y., Li, X., Ma, X., Qiu, T., Fu, X., Ma, Z., Ping, H., & Li, C. (2023). Livestock wastes from family-operated farms are potential important sources of potentially toxic elements, antibiotics, and estrogens in rural areas in North China. Environmental Science and Pollution Research, 30(56), 1–12. https://doi.org/10.1007/s11356-023-30663-w
  • Lozano-Villegas, K. J., Herrera-Sánchez, M. P., Beltrán-Martínez, M. A., Cárdenas-Moscoso, S., Rondón-Barragán, I. S., & Nandi, S. (2023). Molecular detection of virulence factors in Salmonella serovars isolated from poultry and human samples. Veterinary Medicine International, 2023, 1–9. https://doi.org/10.1155/2023/1875253
  • Nair, D. V., & Kollanoor Johny, A. (2019). Salmonella in poultry meat production. In K. Venkitanarayanan, S. Thakur, & S. Ricke (Eds.), Food Safety in poultry meat production (pp. 1–24). Springer.
  • Obe, T., Boltz, T., Kogut, M., Ricke, S. C., Brooks, L. A., Macklin, K., & Peterson, A. (2023). Controlling Salmonella: Strategies for feed, the farm, and the processing plant. Poultry Science, 102(12), 103086. https://doi.org/10.1016/j.psj.2023.103086
  • Pan, H., Paudyal, N., Li, X., Fang, W., & Yue, M. (2018). Multiple food-animal-borne route in transmission of antibiotic-resistant Salmonella Newport to humans. Frontiers in Microbiology, 9, 23. https://doi.org/10.3389/fmicb.2018.00023
  • Parveen, S., Taabodi, M., Schwarz, J. G., Oscar, T. P., Harter-Dennis, J., & White, D. G. (2007). Prevalence and antimicrobial resistance of Salmonella recovered from processed poultry. Journal of Food Protection, 70(11), 2466–2472. https://doi.org/10.4315/0362-028X-70.11.2466
  • Rajan, K., Shi, Z., & Ricke, S. C. (2017). Current aspects of Salmonella contamination in the US poultry production chain and the potential application of risk strategies in understanding emerging hazards. Critical Reviews in Microbiology, 43(3), 370–392. https://doi.org/10.1080/1040841X.2016.1223600
  • Roy, P. K., Ha, A. J.-W., Nahar, S., Hossain, M. I., Ashrafudoulla, M., Toushik, S. H., Mizan, M. F. R., Kang, I., & Ha, S.-D. (2023). Inhibitory effects of vorinostat (SAHA) against food-borne pathogen Salmonella enterica serotype Kentucky mixed culture biofilm with virulence and quorum-sensing relative expression. Biofouling, 39(6), 617–628. https://doi.org/10.1080/08927014.2023.2242263
  • Shan, Y., Lai, Y., & Yan, A. (2012). Metabolic reprogramming under microaerobic and anaerobic conditions in bacteria. In W. Xiaoyuan, C. Jian, & Q. Peter (Eds.), Reprogramming microbial metabolic pathways (pp. 159–179). Springer.
  • Steenackers, H., Hermans, K., Vanderleyden, J., & De Keersmaecker, S. C. (2012). Salmonella biofilms: An overview on occurrence, structure, regulation and eradication. Food Research International, 45(2), 502–531. https://doi.org/10.1016/j.foodres.2011.01.038
  • US Food and Drug Administration. (2022). Investigations of foodborne Illness outbreaks. Retrieved March 20, 2024, from https://www.fda.gov/food/outbreaks-foodborne-illness/investigations-foodborne-illness-outbreaks
  • Wu, R. A., Feng, J., Yue, M., Liu, D., & Ding, T. (2023). Overuse of food-grade disinfectants threatens a global spread of antimicrobial-resistant bacteria. Critical Reviews in Food Science and Nutrition, 1–10. https://doi.org/10.1080/10408398.2023.2176814
  • Yang, S.-M., Kim, E., Kim, D., Kim, H.-B., Baek, J., Ko, S., Kim, D., Yoon, H., & Kim, H.-Y. (2021). Rapid real-time polymerase chain reaction for Salmonella serotyping based on novel unique gene markers by pangenome analysis. Frontiers in Microbiology, 12, 750379. https://doi.org/10.3389/fmicb.2021.750379
  • Yang, T., Wu-Chen, R. A., Zhang, R., Liao, X., Lou, Y., Gölz, G., Ding, T., & Feng, J. (2024). Emergence of rapidly spreading antimicrobial-resistant Salmonella in traditional blood-based foods. Food Quality and Safety, 8, fyae009. https://doi.org/10.1093/fqsafe/fyae009
  • Yin, B., Zhu, L., Zhang, Y., Dong, P., Mao, Y., Liang, R., Niu, L., & Luo, X. (2018). The characterization of biofilm formation and detection of biofilm-related genes in Salmonella isolated from beef processing plants. Foodborne Pathogens and Disease, 15(10), 660–667. https://doi.org/10.1089/fpd.2018.2466