154
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Modeling of low-temperature plasma inhibition and mechanism of Aspergillus flavus on corn kernels surface

ORCID Icon, , , &
Article: 2338276 | Received 11 Dec 2023, Accepted 28 Mar 2024, Published online: 16 Apr 2024

References

  • Abasi, S., Minaei, S., & Khoshtaghaza, M. H. (2017). Effect of desiccant system on thin layer drying kinetics of corn. Journal of Food Science and Technology, 54(13), 4397–10. https://doi.org/10.1007/s13197-017-2914-z
  • Amini, M., & Ghoranneviss, M. (2016). Effects of cold plasma treatment on antioxidants activity, phenolic contents and shelf life of fresh and dried walnut (Juglans regia L.) cultivars during storage. LWT-Food Science and Technology, 73, 178–184. https://doi.org/10.1016/j.lwt.2016.06.014
  • Bakhshzadmahmoudi, M., Morshedian, N., Mehramiz, A., & Kharaghani, M. (2022). Inactivation of Escherichia coli by atmospheric pressure plasma jet in water. Journal of Water and Health, 20(6), 962–971. https://doi.org/10.2166/wh.2022.011
  • Basaran, P., & Akhan, Ü. (2010). Microwave irradiation of hazelnuts for the control of aflatoxin producing Aspergillus parasiticus. Innovative Food Science & Emerging Technologies, 11(1), 113–117. https://doi.org/10.1016/j.ifset.2009.08.010
  • Czylkowski, D., Hrycak, B., Jasiński, M., Dors, M., & Mizeraczyk, J. (2013). Atmospheric pressure microwave microplasma microorganism deactivation. Surface & Coatings Technology, 234, 114–119. https://doi.org/10.1016/j.surfcoat.2013.04.010
  • Dasan, B. G., Boyaci, I. H., & Mutlu, M. (2016). Inactivation of aflatoxigenic fungi (Aspergillus spp.) on granular food model, maize, in an atmospheric pressure fluidized bed plasma system. Food Control, 70, 1–8. https://doi.org/10.1016/j.foodcont.2016.05.015
  • Dasan, B. G., Boyaci, I. H., & Mutlu, M. (2017). Nonthermal plasma treatment of Aspergillus spp. spores on hazelnuts in an atmospheric pressure fluidized bed plasma system: Impact of process parameters and surveillance of the residual viability of spores. Journal of Food Engineering, 196, 139–149. https://doi.org/10.1016/j.jfoodeng.2016.09.028
  • Dasan, B. G., Mutlu, M., & Boyaci, I. H. (2016). Decontamination of Aspergillus flavus and Aspergillus parasiticus spores on hazelnuts via atmospheric pressure fluidized bed plasma reactor. International Journal of Food Microbiology, 216, 50–59. https://doi.org/10.1016/j.ijfoodmicro.2015.09.006
  • Deeyai, P., Amnuaycheewa, P., & Kerdtongmee, P. (2016). Effect of atmospheric pressure argon plasma jet on the growth of bread molds. Key Engineering Materials, 675, 744–748. https://doi.org/10.4028/www.scientific.net/KEM.675-676.744
  • Dijksterhuis, J. (2017). The fungal spore and food spoilage. Current Opinion in Food Science, 17, 68–74. https://doi.org/10.1016/j.cofs.2017.10.006
  • Doshi, P., & Šerá, B. (2023). Role of non-thermal plasma in fusarium inactivation and mycotoxin decontamination. Plants, 12(3), 627. https://doi.org/10.3390/plants12030627
  • Fernández, A., & Thompson, A. (2012). The inactivation of Salmonella by cold atmospheric plasma treatment. Food Research International, 45(2), 678–684. https://doi.org/10.1016/j.foodres.2011.04.009
  • Fountain, J. C., Scully, B. T., Ni, X., Kemerait, R. C., Lee, R. D., Chen, Z. Y, and Guo, B. (2014). Environmental influences on maize-Aspergillus flavus interactions and aflatoxin production. Frontiers in Microbiology, 5, 76491. https://doi.org/10.3389/fmicb.2014.00040
  • Gao, F., Li, Y., Zhao, H., Liang, Y., & Liu, Z. (2022). Sub-chronic, low dose co-exposure to aflatoxin B1 and microcystin-LR in C57BL/6 mice significantly alters the cytokine response in serum and liver. CyTA-Journal of Food, 20(1), 271–284. https://doi.org/10.1080/19476337.2022.2130436
  • Gavahian, M., & Khaneghah, A. M. (2020). Cold plasma as a tool for the elimination of food contaminants: Recent advances and future trends. Critical Reviews in Food Science and Nutrition, 60(9), 1581–1592. https://doi.org/10.1080/10408398.2019.1584600
  • Gavahian, M., Pallares, N., Al Khawli, F., Ferrer, E., & Barba, F. J. (2020). Recent advances in the application of innovative food processing technologies for mycotoxins and pesticide reduction in foods. Trends in Food Science & Technology, 106, 209–218. https://doi.org/10.1016/j.tifs.2020.09.018
  • Hojnik, N., Modic, M., Ni, Y., Filipič, G., Cvelbar, U., & Walsh, J. L. (2019). Effective fungal spore inactivation with an environmentally friendly approach based on atmospheric pressure air plasma. Environmental Science & Technology, 53(4), 1893–1904. https://doi.org/10.1021/acs.est.8b05386
  • Hosseinzadeh Samani, B., Behruzian, A., Khoshtaghaza, M. H., Behruzian, M., & Ansari Ardali, A. (2020). The investigation and optimization of two combined pasteurization methods of ultrasonic‐pulse electric field and hydrodynamic‐pulse electric field on sour cherry juice using RSM‐TOPSIS. Journal of Food Processing and Preservation, 44(9), e14700. https://doi.org/10.1111/jfpp.14700
  • Hou, X., Wang, J., Mei, Y., Ge, L., Qian, J., Huang, Y., & Zhao, N. (2023). Antibiofilm mechanism of dielectric barrier discharge cold plasma against Pichia manshurica. Innovative Food Science & Emerging Technologies, 85, 103340. https://doi.org/10.1016/j.ifset.2023.103340
  • Hussain, A., Lutfullah, G., & Khan, S. (2011). Reduction of aflatoxin B1 contamination in Pakistani wheat varieties by physical methods. Pakistan Journal of Scientific and Industrial Research, 54(1), 23–28. https://doi.org/10.52763/PJSIR.BIOL.SCI.54.1.2011.23.28
  • Ji, M., Li, J., & Fan, L. (2022). Study on the antifungal effect and mechanism of oregano essential oil fumigation against Aspergillus flavus. Journal of Food Processing and Preservation, 46(11), e17026. https://doi.org/10.1111/jfpp.17026
  • Khalil, O. A. A., Hammad, A. A., & Sebaei, A. S. (2021). Aspergillus flavus and Aspergillus ochraceus inhibition and reduction of aflatoxins and ochratoxin a in maize by irradiation. Toxicon, 198(1), 111–120. https://doi.org/10.1016/j.toxicon.2021.04.029
  • Khoshtaghaza, M. H., Khojastehnazhand, M., Mojaradi, B., Goodarzi, M., & Saeys, W. (2015). Texture quality analysis of rainbow trout using hyperspectral imaging method. International Journal of Food Properties, 19(5), 974–983. https://doi.org/10.1080/10942912.2015.1042111
  • Lee, J. J., & Yoon, K. Y. (2021). Optimization of ultrasound-assisted extraction of phenolic compounds from bitter melon (Momordica charantia) using response surface methodology. CyTA-Journal of Food, 19(1), 721–728. https://doi.org/10.1080/19476337.2021.1973110
  • Li, S., Chen, S., Liang, Q., Ma, Z., Han, F., Xu, Y., Jin, W., & Wu, W. (2019). Low temperature plasma pretreatment enhances hot‐air drying kinetics of corn kernels. Journal of Food Process Engineering, 42(6), e13195. https://doi.org/10.1111/jfpe.13195
  • Los, A., Ziuzina, D., Boehm, D., Cullen, P. J., Bourke, P., & Dudley, E. G. (2020). Inactivation efficacies and mechanisms of gas plasma and plasma-activated water against Aspergillus flavus spores and biofilms: A comparative study. Applied and Environmental Microbiology, 86(9), e02619–19. https://doi.org/10.1128/AEM.02619-19
  • Los, A., Ziuzina, D., & Bourke, P. (2018). Current and future technologies for microbiological decontamination of cereal grains. Journal of Food Science, 83(6), 1484–1493. https://doi.org/10.1111/1750-3841.14181
  • Mai-Prochnow, A., Murphy, A. B., McLean, K. M., Kong, M. G., & Ostrikov, K. K. (2014). Atmospheric pressure plasmas: Infection control and bacterial responses. International Journal of Antimicrobial Agents, 43(6), 508–517. https://doi.org/10.1016/j.ijantimicag.2014.01.025
  • Makari, M., Hojjati, M., Shahbazi, S., Askari, H., & Wan, C. (2021). Elimination of Aspergillus flavus from pistachio nuts with dielectric barrier discharge (DBD) cold plasma and its impacts on biochemical indices. Journal of Food Quality, 2021, 1–12. https://doi.org/10.1155/2021/9968711
  • Martínez, M. L., Bordón, M. G., Lallana, R. L., Ribotta, P. D., & Maestri, D. M. (2017). Optimization of sesame oil extraction by screw-pressing at low temperature. Food and Bioprocess Technology, 10(6), 1113–1121. https://doi.org/10.1007/s11947-017-1885-4
  • Ma, W., Zhao, L., & Xie, Y. (2017). Inhibitory effect of (E)-2-hexenal as a potential natural fumigant on Aspergillus flavus in stored peanut seeds. Industrial Crops and Products, 107, 206–210. https://doi.org/10.1016/j.indcrop.2017.05.051
  • Ma, W., Zhao, L., Zhao, W., & Xie, Y. (2019). (E)-2-hexenal, as a potential natural antifungal compound, inhibits Aspergillus flavus spore germination by disrupting mitochondrial energy metabolism. Journal of Agricultural and Food Chemistry, 67(4), 1138–1145. https://doi.org/10.1021/acs.jafc.8b06367
  • Miano, A. C., Ibarz, A., & Augusto, P. E. D. (2017). Ultrasound technology enhances the hydration of corn kernels without affecting their starch properties. Journal of Food Engineering, 197, 34–43. https://doi.org/10.1016/j.jfoodeng.2016.10.024
  • Misra, N., & Jo, C. (2017). Applications of cold plasma technology for microbiological safety in meat industry. Trends in Food Science & Technology, 64, 74–86. https://doi.org/10.1016/j.tifs.2017.04.005
  • Niemira, B. A. (2012). Cold plasma decontamination of foods. Annual Review of Biomedical Engineering, 3(1), 125–142. https://doi.org/10.1146/annurev-food-022811-101132
  • Ribeiro, J., Cavaglieri, L., Vital, H., Cristofolini, A., Merkis, C., Astoreca, A., & Rosa, C. A. R. (2011). Effect of gamma radiation on Aspergillus flavus and Aspergillus ochraceus ultrastructure and mycotoxin production. Radiation Physics & Chemistry, 80(5), 658–663. https://doi.org/10.1016/j.radphyschem.2010.12.017
  • Sarangapani, C., Devi, Y., Thirundas, R., Annapure, U. S., & Deshmukh, R. R. (2015). Effect of low-pressure plasma on physico-chemical properties of parboiled rice. LWT-Food Science and Technology, 63(1), 452–460. https://doi.org/10.1016/j.lwt.2015.03.026
  • Schnabel, U., Niquet, R., Krohmann, U., Winter, J., Schlüter, O., Weltmann, K. D., & Ehlbeck, J. (2012). Decontamination of microbiologically contaminated specimen by direct and indirect plasma treatment. Plasma Processes and Polymers, 9(6), 569–575. https://doi.org/10.1002/ppap.201100088
  • Scholtz, V., Pazlarova, J., Souskova, H., Khun, J., & Julak, J. (2015). Nonthermal plasma—A tool for decontamination and disinfection. Biotechnology Advances, 33(6), 1108–1119. https://doi.org/10.1016/j.biotechadv.2015.01.002
  • Shen, S., Zhang, T., Yuan, Y., Lin, S., Xu, J., & Ye, H. (2015). Effects of cinnamaldehyde on Escherichia coli and staphylococcus aureus membrane. Food Control, 47, 196–202. https://doi.org/10.1016/j.foodcont.2014.07.003
  • Shi, H. (2016). Investigation of methods for reducing aflatoxin contamination in distillers grains [ Doctoral dissertation]. Purdue University
  • Šimončicová, J., Kaliňáková, B., Kováčik, D., Medvecká, V., Lakatoš, B., Kryštofová, S., & Zahoranová, A. (2018). Cold plasma treatment triggers antioxidative defense system and induces changes in hyphal surface and subcellular structures of Aspergillus flavus. Applied Microbiology and Biotechnology, 102(15), 6647–6658. https://doi.org/10.1007/s00253-018-9118-y
  • Suhem, K., Matan, N., Nisoa, M., & Matan, N. (2013). Inhibition of Aspergillus flavus on agar media and brown rice cereal bars using cold atmospheric plasma treatment. International Journal of Food Microbiology, 161(2), 107–111. https://doi.org/10.1016/j.ijfoodmicro.2012.12.002
  • Trebulová, K., Krčma, F., Skoumalová, P., Kozáková, Z., & Machala, Z. (2023). Effects of different cold atmospheric‐pressure plasma sources on the yeast Candida glabrata. Plasma Processes and Polymers, 20(12), e2300048. https://doi.org/10.1002/ppap.202300048
  • Von Woedtke, T., Reuter, S., Masur, K., & Weltmann, K. D. (2013). Plasmas for medicine. Physics Reports, 530(4), 291–320. https://doi.org/10.1016/j.physrep.2013.05.005
  • Wang, B., Khir, R., Pan, Z. L., Wu, B., Ma, H., Zhao, L., & Mahoney, N. E. (2016). Effectiveness of pulsed light treatment for degradation and detoxification of aflatoxin B-1 and B-2 in rough rice and rice bran. Food Control, 59, 461–467. https://doi.org/10.1016/j.foodcont.2015.06.030
  • Wielogorska, E., Ahmed, Y., Meneely, J., Graham, W. G., Elliott, C. T., & Gilmore, B. F. (2019). A holistic study to understand the detoxification of mycotoxins in maize and impact on its molecular integrity using cold atmospheric plasma treatment. Food Chemistry, 301, 125281. https://doi.org/10.1016/j.foodchem.2019.125281
  • Wu, Y., Cheng, J. H., & Sun, D. W. (2021). Blocking and degradation of aflatoxins by cold plasma treatments: Applications and mechanisms. Trends in Food Science & Technology, 109, 647–661. https://doi.org/10.1016/j.tifs.2021.01.053
  • Xu, H., Zhu, Y., Du, M., Wang, Y., Ju, S., Ma, R., & Jiao, Z. (2021). Subcellular mechanism of microbial inactivation during water disinfection by cold atmospheric-pressure plasma. Water Research, 188, 116513. https://doi.org/10.1016/j.watres.2020.116513
  • Zhang, H., Zhang, C., & Han, Q. (2023). Mechanisms of bacterial inhibition and tolerance around cold atmospheric plasma. Applied Microbiology and Biotechnology, 107(17), 5301–5316. https://doi.org/10.1007/s00253-023-12618-w
  • Zhao, L., Wang, J., Sheng, X., Li, S., Yan, W., Qian, J., & Raghavan, V. (2023). Non-thermal plasma inhibited the growth and aflatoxins production of Aspergillus flavus, degraded aflatoxin B1 and its potential mechanisms. The Chemical Engineering Journal, 475, 146017. https://doi.org/10.1016/j.cej.2023.146017
  • Zheng, A., Zhang, L., & Wang, S. (2017). Verification of radio frequency pasteurization treatment for controlling Aspergillus parasiticus on corn grains. International Journal of Food Microbiology, 249, 27–34. https://doi.org/10.1016/j.ijfoodmicro.2017.02.017