232
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Examining the response of Botrytis cinerea to aqueous ozone: inactivation kinetics, structure, physiology, and growth in different strawberries cultivars

, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Article: 2339446 | Received 23 Jan 2024, Accepted 01 Apr 2024, Published online: 16 Apr 2024

References

  • Aslam, R., Alam, M. S., & Saeed, P. A. (2020). Sanitization potential of ozone and its role in postharvest quality management of fruits and vegetables. Food Engineering Reviews, 12(1), 48–11. https://doi.org/10.1007/s12393-019-09204-0
  • Bardas, G. A., Veloukas, T., Koutita, O., & Karaoglanidis, G. S. (2010). Multiple resistance of Botrytis cinerea from kiwifruit to SDHIs, QoIs and fungicides of other chemical groups. Pesticide Management Science, 66(9), 967–973. https://doi.org/10.1002/ps.1968
  • Bestfleisch, M., Luderer-Pfimpfl, M., Höfer, M., Schulte, E., Wünsche, J. N., Hanke, M. V., & Flachowsky, H. (2015). Evaluation of strawberry (Fragaria L.) genetic resources for resistance to Botrytis cinerea. Plant Pathology, 64(2), 396–405. https://doi.org/10.1111/ppa.12278
  • Bi, K., Liang, Y., Mengiste, T., & Sharon, A. (2023). Killing softly: A roadmap of Botrytis cinerea pathogenicity. Trends in Plant Science, 28(2), 211–222. https://doi.org/10.1016/j.tplants.2022.08.024
  • Brul, S., Nussbaum, J., & Dielbandhoesing, S. K. (1997). Fluorescence probes for wall porosity and membrane integrity in filamentous fungi. Journal of Microbiological Methods, 28(3), 169–178. https://doi.org/10.1016/S0167-7012(97)00975-5
  • Butt, T. M., Hoch, H. C., Staples, R. C., & Leger, R. J. (1989). Use of fluorochromes in the study of fungal cytology and differentiation. Experimental Mycology, 13(4), 303–320. https://doi.org/10.1016/0147-5975(89)90026-1
  • Contigiani, E. V., Jaramillo- Sánchez, G., Castro, M. A., Gómez, P. L., & Alzamora, S. M. (2018). Postharvest quality of strawberry fruit (Fragaria x Ananassa Duch cv. Albion) as affected by ozone washing: Fungal spoilage, mechanical properties, and structure. Food and Bioprocess Technology, 11(9), 1639–1650. https://doi.org/10.1007/s11947-018-2127-0
  • Contigiani, E. V., Kronberg, M. F., Jaramillo-Sánchez, G., Gómez, P. L., Garcia-Loredo, A. B., Munarriz, E., & Alzamora, S. M. (2020). Ozone washing decreases strawberry susceptibility to Botrytis cinerea while maintaining antioxidant, optical and sensory quality. Heliyon, 6(11), e05416. https://doi.org/10.1016/j.heliyon.2020.e05416
  • Cosseboom, S. D., Ivors, K. L., Schnabel, G., Bryson, P. K., & Holmes, G. J. (2019). Within-season shift in fungicide resistance profiles of botrytis cinerea in California Strawberry fields. Plant Disease, 103(1), 59–64. https://doi.org/10.1094/PDIS-03-18-0406-RE
  • Dean, R., Van Kan, J. A. L., Pretorius, Z. A., Hammond-Kosack, K. E., DiPietro, A., Spanu, P. D., Rudd, J. J., Dickman, M., Kahmann, R., Ellis, J., & Foster, G. D. (2012). The top 10 fungal pathogens in molecular plant pathology. Molecular Plant Pathology, 13(4), 414–430. https://doi.org/10.1111/j.1364-3703.2011.00783.x
  • Dijksterhuis, J. (2017). The fungal spores and food spoilage. Current Opinion in Food Science, 17, 68–74. https://doi.org/10.1016/j.cofs.2017.10.006
  • Epelle, E. I., Macfarlane, A., Cusack, M., Burns, A., Okolie, J. A., Mackay, W., Rateb, M., & Yaseen, M. (2023). Ozone application in different industries: A review of recent developments. Chemical Engineering Journal, 5(454), 140188. https://doi.org/10.1016/j.cej.2022.140188
  • Fröhling, A., & Schlüter, O. (2015). Flow cytometric evaluation of physico-chemical impact on gram-positive and gram-negative bacteria. Frontiers in Microbiology, 6, 939. https://doi.org/10.3389/fmicb.2015.00939
  • Garcia-Loredo, A. B., Guerrero, S. N., & Alzamora, S. M. (2015). Inactivation kinetics and growth dynamics during cold storage of Escherichia coli ATCC 11229, listeria innocua ATCC 33090 and Saccharomyces cerevisiae KE162 in peach juice using aqueous ozone. Innovative Food Science and Emerging Technologies, 29, 271–279. https://doi.org/10.1016/j.ifset.2015.02.007
  • Glaze, W. H. (1986). Reaction products of ozone: A review. Environmental Health Perspectives, 69, 151–157. https://doi.org/10.1289/ehp.8669151
  • Hewitt, C. J., Bellara, S. R., Andreani, A., Nebe von Caron, G., & Mcfarlane, C. M. (2001). An evaluation of the anti-bacterial action of ceramic powder slurries using multiparameter flow cytometry. Biotechnology Letters, 23(9), 667–675. https://doi.org/10.1023/A:1010379714673
  • Hunt, N. K., & MariñMariñAs, B. J. (1999). Inactivation of Escherichia coli with ozone: Chemical and inactivation kinetics. Water Research, 33(11), 2633–2691. https://doi.org/10.1016/S0043-1354(99)00115-3
  • Kang, M. H., Pengkit, A., Choi, K., Jeon, S. S., Choi, H. W., Shin, D. B., Choi, E. H., Uhm, H. S., Park, G., & Wang, Z. (2015). Differential inactivation of fungal spores in water and on seeds by ozone and arc discharge plasma. PLOS ONE, 10(9), e0139263. https://doi.org/10.1371/journal.pone.0139263
  • Kangasjärvi, J., Talvinen, J., Utriainen, M., & Karjalainen, R. (1994). Plant defence systems induced by ozone. Plant, Cell & Environment, 17(7), 783–794. https://doi.org/10.1111/j.1365-3040.1994.tb00173.x
  • Li, H., Larsen, D. L., Cao, R., van de Peppel, A. C., Tikunov, Y. M., Marcelis, L. F. M., Woltering, E. J., van Kan, J. A. L., & Schouten, R. E. (2022). The association between the susceptibility to Botrytis cinerea and the levels of volatile and non-volatile metabolites in red ripe strawberry genotypes. Food Chemistry, 393, 133252. https://doi.org/10.1016/j.foodchem.2022.133252
  • Minas, I. S., Karaoglanidis, G. S., Manganaris, G. A., & Vasilakakis, M. (2010). Effect of ozone application during cold storage of kiwifruit on the development of stem-end rot caused by botrytis cinerea. Postharvest Biology and Technology, 58(3), 203–210. https://doi.org/10.1016/j.postharvbio.2010.07.002
  • Muthusamy, M., & Lee, S. I. (2024). Abiotic stress-induced secondary metabolite production in Brassica: Opportunities and challenges. Frontiers in Plant Science, 14, 1323085. https://doi.org/10.3389/fpls.2023.1323085
  • Nadas, A., Olmo, M., & García, J. M. (2003). Growth of Botrytis cinerea and strawberry quality in ozone‐enriched atmospheres. Journal of Food Science, 68(5), 1798–1802. https://doi.org/10.1111/j.1365-2621.2003.tb12332.x
  • Orozco-Mosqueda, M. C., Kumar, A., Fadiji, A. E., Babalola, O. O., Puopolo, G., & Santoyo, G. (2023). Agroecological management of the grey mould fungus Botrytis cinerea by plant growth-promoting bacteria. Plants, 12(3), 637. https://doi.org/10.3390/plants12030637
  • Pagès, M., Kleiber, D., Pierron, R. J., & Violleau, F. (2015). Ozone effects on Botrytis cinerea conidia using a bubble column: Germination inactivation and membrane phospholipids oxidation. Ozone: Science & Engineering, 38(1), 62–69. https://doi.org/10.1080/01919512.2015.1074856
  • Pandiselvam, R., Subhashini, S., Banuu Priya, E. P., Kothakota, A., Ramesh, S. V., & Shahir, S. (2019). Ozone based food preservation: A promising green technology for enhanced food safety. Ozone: Science & Engineering, 41(1), 17–34. https://doi.org/10.1080/01919512.2018.1490636
  • Peleg, M. (1999). On calculating sterility in thermal and non-thermal preservation methods. Food Research International, 32(4), 271–278. https://doi.org/10.1016/S0963-9969(99)00081-2
  • Peleg, M., & Cole, M. B. (1998). Reinterpretation of microbial survival curves. Critical Reviews in Food Science and Nutrition, 38(5), 353–380. https://doi.org/10.1080/10408699891274246
  • Petrasch, S., Knapp, S. J., van Kan, J. A. L., & Blanco-Ulate, B. (2019). Grey mould of strawberry, a devastating disease caused by the ubiquitous necrotrophic fungal pathogen Botrytis cinerea. Molecular Plant Pathology, 20(6), 877–892. https://doi.org/10.1111/mpp.12794
  • Ramamurthy, T., Ghosh, A., Pazhani, G. P., & Shinoda, S. (2014). Current perspectives on viable but non-culturable (VBNC) pathogenic bacteria. Frontiers in Public Health, 2, 103. https://doi.org/10.3389/fpubh.2014.00103
  • Rangel, K., Cabral, F. O., Lechuga, G. C., Carvalho, J. P. R. S., Villas- BôBôAs, M. H. S., Midlej, V., & De Simone, S. G. (2022). Detrimental effect of ozone on pathogenic bacteria. Microorganisms [Internet], 10(1), 40. https://doi.org/10.3390/microorganisms10010040
  • Romero-Bernal, A. R., Contigiani, E. V., González, H. H. L., Alzamora, S. M., Gómez, P. L., & Raffellini, S. (2019). Botrytis cinerea response to pulsed light: Cultivability, physiological state, ultrastructure and growth ability on strawberry fruit. International Journal of Food Microbiology, 309, 1–8. https://doi.org/10.1016/j.ijfoodmicro.2019.108311
  • Šamec, D., Karalija, E., Šola, I., Vujčić Bok, V., & Salopek-Sondi, B. (2021). The role of polyphenols in abiotic stress response: The influence of molecular structure. Plants, 10(1), 118. https://doi.org/10.3390/plants10010118
  • Šamec, S., Maretic’, M., Lugaric’, I., Mešic’, A., Salopek-Sondi, B., & Duralija, B. (2016). Assessment of the differences in the physical, chemical and phytochemical properties of four strawberry cultivars using principal component analysis. Food Chemistry, 194, 828–834. https://doi.org/10.1016/j.foodchem.2015.08.095
  • Sandermann, H. J., Ernst, D., Heller, W., & Langebartels, C. (1998). Ozone: An abiotic elicitor of plant defense reactions. Trends in Plant Science Reviews, 3(2), 47–50. https://doi.org/10.1016/S1360-1385(97)01162-X
  • Savi, G. D., & Scussel, V. M. (2014). Effects of ozone gas exposure on toxigenic fungi species from fusarium, Aspergillus, and Penicillium genera. Ozone: Science & Engineering, 36(2), 144–152. https://doi.org/10.1080/01919512.2013.846824
  • Tuffi, R., Lovino, R., Canese, S., Cafiero, L. M., & Vitali, F. (2012). Effects of exposure to gaseous ozone and negative air ions on control of epiphytic flora and the development of Botrytis cinerea and Penicillium expansum during cold storage of strawberries and tomatoes. Italian Journal of Food Science, 4(2), 102.
  • Tzortzakis, N. (2023). Preservation of fresh strawberries in an ozone-enriched atmosphere. Acta Horticulturae, 1363(1363), 212–220. https://doi.org/10.17660/ActaHortic.2023.1363.32
  • Veloso, J., & van Kan, J. A. L. (2018). Many shades of grey in Botrytis–host plant interactions. Trends in Plant Sciences, 23(7), 613–622. https://doi.org/10.1016/j.tplants.2018.03.016
  • Wen, G., Liang, Z., Xu, X., Cao, R., Wan, Q., Ji, G., Lin, W., Wang, J., Yang, J., & Huang, T. (2020). Inactivation of fungal spores in water using ozone: Kinetics, influencing factors and mechanisms. Water Research, 185, 116218. https://doi.org/10.1016/j.watres.2020.116218
  • Xue, W., Macleod, J., & Blaxland, J. (2023). The use of ozone technology to control microorganism growth, enhance food safety and extend shelf life: A promising food decontamination technology. Foods, 12(4), 814. https://doi.org/10.3390/foods12040814
  • Zhao, Y., Vlasselaer, L., Ribeiro, B., Terzoudis, K., Van den Ende, W., Hertog, M., Nicolaï, B., & De Coninck, B. (2022). Constitutive defense mechanisms have a major role in the resistance of woodland strawberry leaves against botrytis cinerea. Frontiers in plant science, 13, 912667. https://doi.org/10.3389/fpls.2022.912667
  • Zhou, D., Wang, Z., Peng, S., Chen, J., & Tu, K. (2019). Effects of cold plasma, UV-C or aqueous ozone treatment on Botrytis cinerea and their potential application in preserving blueberry. Journal of Applied Microbiology, 127(1), 175–185. https://doi.org/10.1111/jam.14280