238
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Sweetener identification using transfer learning and attention mechanism

ORCID Icon, ORCID Icon & ORCID Icon
Article: 2341812 | Received 07 Nov 2023, Accepted 05 Apr 2024, Published online: 06 May 2024

References

  • Banerjee, P., Erehman, J., Gohlke, B. O., Wilhelm, T., Preissner, R., & Dunkel, M. (2015). Super natural II—a database of natural products. Nucleic acids research, 43(D1), D935–D939. https://doi.org/10.1093/nar/gku886
  • Bo, W., Qin, D., Zheng, X., Wang, Y., Ding, B., Li, Y., & Liang, G. (2022). Prediction of bitterant and sweetener using structure-taste relationship models based on an artificial neural network. Food Research International, 153, 110974. https://doi.org/10.1016/j.foodres.2022.110974
  • Bouysset, C., Belloir, C., Antonczak, S., Briand, L., & Fiorucci, S. (2020). Novel scaffold of natural compound eliciting sweet taste revealed by machine learning. Food Chemistry, 324, 126864. https://doi.org/10.1016/j.foodchem.2020.126864
  • Castro-Muñoz, R., Correa-Delgado, M., Córdova-Almeida, R., Lara-Nava, D., Chávez-Muñoz, M., Velásquez-Chávez, V. F., Hernández-Torres, C. E., Gontarek-Castro, E., & Ahmad, M. Z. (2022). Natural sweeteners: Sources, extraction and current uses in foods and food industries. Food Chemistry, 370, 130991. https://doi.org/10.1016/j.foodchem.2021.130991
  • Chen, J., Cheong, H. H., & Siu, S. W. (2021). xDeep-AcPEP: Deep learning method for anticancer peptide activity prediction based on convolutional neural network and multitask learning. Journal of Chemical Information and Modeling, 61(8), 3789–13. https://doi.org/10.1021/acs.jcim.1c00181
  • Dagan-Wiener, A., DiPizio, A., Nissim, I., Bahia, M. S., Dubovski, N., Margulis, E., & Niv, M. Y. (2019). BitterDB: Taste ligands and receptors database in 2019. Nucleic Acids Research, 47(D1), D1179–D1185. https://doi.org/10.1093/nar/gky974
  • Debras, C., Chazelas, E., Srour, B., Druesne-Pecollo, N., Esseddik, Y., de Edelenyi, F. S., De Sa, A., Lutchia, R., Gigandet, S., Huybrechts, I., Julia, C., Kesse-Guyot, E., Allès, B., Andreeva, V. A., Galan, P., Hercberg, S., Deschasaux-Tanguy, M., Touvier, M., & Agaësse, C. (2022). Artificial sweeteners and cancer risk: Results from the NutriNet-Santé population-based cohort study. PLOS Medicine, 19(3), e1003950. https://doi.org/10.1371/journal.pmed.1003950
  • Fritz, F., Preissner, R., & Banerjee, P. (2021). VirtualTaste: A web server for the prediction of organoleptic properties of chemical compounds. Nucleic Acids Research, 49(W1), W679–W684. https://doi.org/10.1093/nar/gkab292
  • Gardener, H., & Elkind, M. S. (2019). Artificial sweeteners, real risks. Stroke, 50(3), 549–551. https://doi.org/10.1161/STROKEAHA.119.024456
  • Garg, N., Sethupathy, A., Tuwani, R., Nk, R., Dokania, S., Iyer, A., Gupta, A., Agrawal, S., Singh, N., Shukla, S., Kathuria, K., Badhwar, R., Kanji, R., Jain, A., Kaur, A., Nagpal, R., & Bagler, G. (2018). FlavorDB: A database of flavor molecules. Nucleic Acids Research, 46(D1), D1210–D1216. https://doi.org/10.1093/nar/gkx957
  • Goel, A., Gajula, K., Gupta, R., & Rai, B. (2021). In-silico screening of database for finding potential sweet molecules: A combined data and structure based modeling approach. Food Chemistry, 343, 128538. https://doi.org/10.1016/j.foodchem.2020.128538
  • Gutiérrez, S., Hernández, I., Ceballos, S., Barrio, I., Díez-Navajas, A. M., & Tardaguila, J. (2021). Deep learning for the differentiation of downy mildew and spider mite in grapevine under field conditions. Computers and Electronics in Agriculture, 182, 105991. https://doi.org/10.1016/j.compag.2021.105991
  • He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 770–778). https://arxiv.org/abs/1512.03385
  • Hua, J., Zhu, T., & Liu, J. (2022). Leaf classification for crop pests and diseases in the compressed domain. Sensors, 23(1), 48. https://doi.org/10.3390/s23010048
  • Hu, J., Shen, L., & Sun, G. (2018). Squeeze-and-excitation networks. Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 7132–7141). https://doi.org/10.48550/arXiv.1709.01507
  • Iqbal, J., Vogt, M., & Bajorath, J. (2021). Learning functional group chemistry f-rom molecular images leads to accurate prediction of activity cliffs. Artificial Intelligence in the Life Sciences, 1, 100022. https://doi.org/10.1016/j.ailsci.2021.100022
  • Kou, X., Shi, P., Gao, C., Ma, P., Xing, H., Ke, Q., & Zhang, D. (2023). Data-driven elucidation of flavor chemistry. Journal of Agricultural and Food Chemistry, 71(18), 6789–6802. https://doi.org/10.1021/acs.jafc.3c00909
  • Lee, J., Song, S. B., Chung, Y. K., Jang, J. H., & Huh, J. (2022). BoostSweet: Learning molecular perceptual representations of sweeteners. Food Chemistry, 383, 132435. https://doi.org/10.1016/j.foodchem.2022.132435
  • Li, D., Yao, Y., & Sun, H. (2021). Emission and mass load of artificial sweeteners from a pig farm to its surrounding environment: Contribution of airborne pathway and biomonitoring potential. Environmental Science & Technology, 55(4), 2307–2315. https://doi.org/10.1021/acs.est.0c05326
  • Li, D., Zheng, Q., Thomas, K. V., Dang, A. K., Binh, V. N., Anh, N. T. K., & Thai, P. K. (2023). Use of artificial sweeteners and caffeine in a population of Hanoi: An assessment by wastewater-based epidemiology. Science of the Total Environment, 868, 161515. https://doi.org/10.1016/j.scitotenv.2023.161515
  • Loshchilov, I., & Hutter, F. (2016). Sgdr: Stochastic gradient descent with warm restarts. arXiv Preprint arXiv: 160803983. https://doi.org/10.48550/arXiv.1608.03983
  • MALULY, H. D. B., Johnston, C., Giglio, N. D., Schreiner, L. L., Roberts, A., & Abegaz, E. G. (2020). Low-and No-Calorie Sweeteners (LNCS): Critical evaluation of their safety and health risks. Food Science and Technology, 40(1), 1–10. https://doi.org/10.1590/fst.36818
  • Mela, D. J., McLaughlin, J., & Rogers, P. J. (2020). Perspective: Standards for research and reporting on low-energy (“artificial”) sweeteners. Advances in Nutrition, 11(3), 484–491. https://doi.org/10.1093/advances/nmz137
  • Miao, Y., Ni, H., Zhang, X., Zhi, F., Long, X., Yang, X., Zhang, X., He, X., & Zhang, L. (2022). Investigating mechanism of sweetness intensity differences through dynamic analysis of sweetener–T1R2–membrane systems. Food Chemistry, 374, 131807. https://doi.org/10.1016/j.foodchem.2021.131807
  • Moriconi, E., Feraco, A., Marzolla, V., Infante, M., Lombardo, M., Fabbri, A., & Caprio, M. (2020). Neuroendocrine and metabolic effects of low-calorie and non-calorie sweeteners. Frontiers in Endocrinology, 11, 444. https://doi.org/10.3389/fendo.2020.00444
  • Rojas, C., Ballabio, D., Consonni, V., Tripaldi, P., Mauri, A., & Todeschini, R. (2016). Quantitative structure–activity relationships to predict sweet and non-sweet tastes. Theoretical Chemistry Accounts, 135(3), 1–13. https://doi.org/10.1007/s00214-016-1812-1
  • Rojas, C., Todeschini, R., Ballabio, D., Mauri, A., Consonni, V., Tripaldi, P., & Grisoni, F. (2017). A QSTR-based expert system to predict sweetness of molecules. Frontiers in Chemistry, 5, 53. https://doi.org/10.3389/fchem.2017.00053
  • Saraiva, A., Carrascosa, C., Raheem, D., Ramos, F., & Raposo, A. (2020). Natural sweeteners: The relevance of food naturalness for consumers, food security aspects, sustainability and health impacts. International Journal of Environmental Research and Public Health, 17(17), 1–22. https://doi.org/10.3390/ijerph17176285
  • Sharma, V., Wakode, S., & Kumar, H. (2021). Structure-and ligand-based drug design: Concepts, approaches, and challenges. Chemoinformatics and Bioinformatics in the Pharmaceutical Sciences, 27–53. https://doi.org/10.1016/B978-0-12-821748-1.00004-X
  • Shi, T., Yang, Y., Huang, S., Chen, L., Kuang, Z., Heng, Y., & Mei, H. (2019). Molecular image-based convolutional neural network for the prediction of ADMET properties. Chemometrics and Intelligent Laboratory Systems, 194, 103853. https://doi.org/10.1016/j.chemolab.2019.103853
  • Tuwani, R., Wadhwa, S., & Bagler, G. (2019). BitterSweet: Building machine learning models for predicting the bitter and sweet taste of small molecules. Scientific Reports, 9(1), 7155. https://doi.org/10.1038/s41598-019-43664-y
  • Wang, Z., Bovik, A. C., Sheikh, H. R., & Simoncelli, E. P. (2004). Image quality assessment: From error visibility to structural similarity. IEEE Transactions on Image Processing, 13(4), 600–612. https://doi.org/10.1109/TIP.2003.819861
  • Woo, S., Park, J., Lee, J. Y., & Kweon, I. S. (2018). Cbam: Convolutional block attention module. Proceedings of the European conference on computer vision (ECCV) (pp. 3–19). https://doi.org/10.48550/arXiv.1807.06521
  • Wu, D., Ying, Y., Zhou, M., Pan, J., & Cui, D. (2023). Improved ResNet-50 deep learning algorithm for identifying chicken gender. Computers and Electronics in Agriculture, 205, 107622. https://doi.org/10.1016/j.compag.2023.107622
  • Xu, Y., Kou, J., Zhang, Q., Tan, S., Zhu, L., Geng, Z., & Yang, X. (2023). Visual detection of water content range of sea buckthorn fruit based on transfer deep learning. Foods, 12(3), 550. https://doi.org/10.3390/foods12030550
  • Yang, Z. F., Xiao, R., Xiong, G. L., Lin, Q. L., Liang, Y., Zeng, W. B., Dong, J., & Cao, D. S. (2022). A novel multi-layer prediction approach for sweetness evaluation based on systematic machine learning modeling. Food Chemistry, 372, 131249. https://doi.org/10.1016/j.foodchem.2021.131249
  • Yu, F., Lu, T., & Xue, C. (2023). Deep learning-based intelligent apple variety classification system and model interpretability analysis. Foods, 12(4), 885. https://doi.org/10.3390/foods12040885
  • Zhao, X., Li, K., Li, Y., Ma, J., & Zhang, L. (2022). Identification method of vegetable diseases based on transfer learning and attention mechanism. Computers and Electronics in Agriculture, 193, 106703. https://doi.org/10.1016/j.compag.2022.106703
  • Zheng, S., Chang, W., Xu, W., Xu, Y., & Lin, F. (2019). E-sweet: A machine-learning based platform for the prediction of sweetener and its relative sweetness. Frontiers in Chemistry, 7, 35. https://doi.org/10.3389/fchem.2019.00035
  • Zhong, S., Hu, J., Yu, X., & Zhang, H. (2021). Molecular image-convolutional neural network (CNN) assisted QSAR models for predicting contaminant reactivity toward OH radicals: Transfer learning, data augmentation and model interpretation. Journal of chemical engineering, 408, 127998. https://doi.org/10.1016/j.cej.2020.127998