178
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Co-fermentation and post-processing: development of a novel myrtle rice beverage, and analysis of its product characteristics

, , , &
Article: 2348099 | Received 11 Dec 2023, Accepted 22 Apr 2024, Published online: 08 May 2024

References

  • Abuelizz, H. A., El Hassane, A., Marzouk, M., Taie, H. A. A., Ahudhaif, A., & Al-Salahi, R. (2020). DFT study and radical scavenging activity of 2-phenoxypyridotriazolo pyrimidines by DPPH, ABTS, FRAP and reducing power capacity. Chemical Papers, 74(9), 2893–10. https://doi.org/10.1007/s11696-020-01126-0
  • Adom, K. K., & Liu, R. H. (2002). Antioxidant activity of grains. Journal of Agricultural and Food Chemistry, 50, 6182–6187. https://doi.org/10.1021/jf0205099. 21
  • Akyuz, M., Guzel, L. A., & Elmastas, M. (2019). Fatty acid composition and antioxidant capacity of Myrtus (Myrtus communis L.). Malaysian Applied Biology Journal, 48(5), 101–112.
  • Aleksic, V., & Knezevic, P. (2014). Antimicrobial and antioxidative activity of extracts and essential oils of Myrtus communis L. Microbiology Research, 169(4), 240–254. https://doi.org/10.1016/j.micres.2013.10.003
  • Babou, L., Hadidi, L., Grosso, C., Zaidi, F., Valentão, P., & Andrade, P. B. (2016). Study of phenolic composition and antioxidant activity of myrtle leaves and fruits as a function of maturation. European Food Research and Technology, 242(9), 1447–1457. https://doi.org/10.1007/s00217-016-2645-9
  • Bouma, G., & Strober, W. (2003). The immunological and genetic basis of inflammatory bowel disease. Nature Reviews Immunology, 3(7), 521–533. https://doi.org/10.1038/nri1132
  • Cho, J. Y., Chang, H. J., Lee, S. K., Kim, H. J., Hwang, J. K., & Chun, H. S. (2007). Amelioration of dextran sulfate sodium-induced colitis in mice by oral administration of β-caryophyllene, a sesquiterpene. Life Sciences, 80(10), 932–939. https://doi.org/10.1016/j.lfs.2006.11.038
  • Chun, O. K., Kim, D. O., Smith, N., Schroeder, D., Han, J. T., & Lee, C. Y. (2005). Daily consumption of phenolics and total antioxidant capacity from fruit and vegetables in the American diet. Journal of the Science of Food and Agriculture, 85(10), 1715–1724. https://doi.org/10.1002/jsfa.2176
  • Ciriminna, R., Palmisano, G., Pina, C. D., Rossi, M., & Pagliaro, M. (2006). One-pot electroactalytic oxidation of glycerol to DHA. Tetrahedron Letters, 47(39), 6993–6995. https://doi.org/10.1016/j.tetlet.2006.07.123
  • Fang, K. T., & Ma, C. X. (2001). Orthogonal design and uniform design. Science Press.
  • Gao, X., Zhu, D., Liu, Y., Zha, L., Chen, D., & Guo, H. (2019). Physicochemical properties and anthocyanin bioaccessibility of downy rose-myrtle powder prepared by superfine grinding. International Journal of Food Properties, 22(1), 2022–2032. https://doi.org/10.1080/10942912.2019.1702999
  • Ghafouri, F., & Rahimmalek, M. (2018). Genetic structure and variation in different Iranian Myrtle (Myrtus communis L.) populations based on morphological, phytochemical and molecular markers. Industrial Crops and Products, 123, 489–499. https://doi.org/10.1016/j.indcrop.2018.06.086
  • Giampieri, F., Cianciosi, D., & Forbes-Hernández, T. Y. (2020). Myrtle (Myrtus communis L.) berries, seeds, leaves, and essential oils: New undiscovered sources of natural compounds with promising health benefts. Food Frontiers. 1(3), 276–295. https://doi.org/10.1002/fft2.37
  • Gorjian, H., Amiri, Z. R., Milani, J. M., & Khaligh, N. G. (2022). Influence of nanovesicle type, nanoliposome and nanoniosome on antioxidant and antimicrobial activities of encapsulated myrtle extract: A comparative study. Food and Bioprocess Technology, 15(1), 144–164. https://doi.org/10.1007/s11947-021-02747-3
  • Gorjian, H., & Khaligh, N. G. (2023). Myrtle: A versatile medicinal plant. Nutrire, 48(1), 10. https://doi.org/10.1186/s41110-023-00194-y
  • Hennia, A., Nemmiche, S., Guerreiro, A., Faleiro, M. L., Antunes, M. D., Aazza, S., & Miguel, M. G. (2019). Antioxidant and antiproliferative activities of Myrtus communis L. essential oils from different Algerian regions. Journal of Essential Oil Bearing Plants, 22(6), 1488–1499. https://doi.org/10.1080/0972060X.2019.1687335
  • Huang, W. Y., Cai, Y. Z., Corke, H., & Sun, M. (2010). Survey of antioxidant capacity and nutritional quality of selected edible and medicinal fruit plants in Hong Kong. Journal of Food Composition and Analysis, 23(6), 510–517. https://doi.org/10.1016/j.jfca.2009.12.006
  • Huang, J., Sun, Q. J., Zheng, B. Q., Du, L. J., Wei, L., & Gao, X. Z. (2023). Effects of myrtle addition methods on physical and chemical properties, aromatic components and sensory of beer. Food Science and Technology, 48, 88–94. https://doi.org/10.13684/j.cnki.spkj.2023.03.010
  • Kim, K. S., & Hong, S. D. (2000). Synthesis and stereoselective aldol reaction of dihydroxyacetone derivatives. Tetrahedron Letters, 41(31), 5909–5913. https://doi.org/10.1016/S0040-4039(00)00969-2
  • Lai, T. N. H., Andre, C., Rogez, H., Mignolet, E., Nguyen, T. B. T., & Larondelle, Y. (2015). Nutritional composition and antioxidant properties of the sim fruit (Rhodomyrtus tomentosa). Food Chemistry, 168, 410–416. https://doi.org/10.1016/j.foodchem.2014.07.081
  • Liu, Z. M., & Jiang, S. Y. (2001). Study on the biological properties in the fermentation of sweeten glutinous rice wine. Liquor Making. 28, 59–62. https://doi.org/10.3969/j.issn.1002-8110.2001.05.018
  • Li, H., Wang, R. R., Liu, J., Zhang, Q., Li, G. Y., Shan, Y., & Ding, S. H. (2021). Fatty acid composition and antioxidant capacity of Myrtus (Myrtus communis L.). Journal of Chinese Institute of Food Science and Technology, 21, 57–66. https://doi.org/10.16429/j.1009-7848.2021.05.007
  • López-Malo, M., García-Rios, E., Melgar, B., Sanchez, M. R., Dunha, M. J., & Guillamón, J. M. (2015). Evolutionary engineering of a wine yeast strain revealed a key role of inositol and mannoprotein metabolism during low-temperature fermentation. BMC Genomics, 16(1), 537–551. https://doi.org/10.1186/s12864-015-1755-2
  • Luo, S. Y., Wang, C., Duan, H. Y., Luo, Y. X., & Yu, B. (2015). Main antioxidant components and antioxidant activity of wild hill gooseberry fruits (Rhodomyrtus tomentosa) from southern china. Food Science, 36, 77–82. https://doi.org/10.7506/spkx1002-6630-201517015
  • Medda, S., Fadda, A., Dessena, L., & Mulas, M. (2021). Quantification of total phenols, tannins, anthocyanins content in Myrtus communis L. And antioxidant activity evaluation in function of plant development stages and altitude of origin site. Agronomy, 11(6), 1059. https://doi.org/10.3390/agronomy11061059
  • Mele, C., Corona, L., Melito, S., Raggi, L., & Mulas, M. (2019). The genetic diversity of selections and wild populations of myrtle revealed by molecular geographic contexts. Industrial Crops and Products, 132, 168–176. https://doi.org/10.1016/j.indcrop.2019.02.018
  • Moukette, B. M., Pieme, C. A., Njimou, J. R., Biapa, C. P. N., Marco, B., & Ngogang, J. Y. (2015). In vitro antioxidant properties, free radicals scavenging activities of extracts and polyphenol composition of a non-timber forest product used as spice: Monodora myristica. Biological Research, 48(1), 1–17. https://doi.org/10.1186/s40659-015-0003-1
  • Patel, A. N., Mckelvey, K., & Unwin, P. R. (2012). Nanoscale electrochemical patterning reveals the active sites for catechol oxidation at graphite surfaces. Journal of the American Chemical Society, 134(50), 20246–20249. https://doi.org/10.1021/ja3095894
  • Redón, M., Guillamón, J. M., Mas, A., & Rozès, N. (2011). Effect of growth temperature on yeast lipid composition and alcoholic fermentation at low temperature. European Food Research and Technology, 232(3), 517–527. https://doi.org/10.1007/s00217-010-1415-3
  • Ren, F., & Han, Z. Q. (2012). Study on the fermentation mechanism of rice wine. China Brewing, 31, 140–143. https://doi.org/10.3969/j.issn.0254-5071.2012.08.040
  • Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., & Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine, 26(9–10), 1231–1237. https://doi.org/10.1016/S0891-5849(98)00315-3
  • Sakakibara, H., Honda, Y., Nakagawa, S., Ashida, H., & Kanazawa, K. (2003). Simultaneous determination of all polyphenols in vegetables, fruits, and teas. Journal of Agricultural and Food Chemistry, 51(3), 571–581. https://doi.org/10.1021/jf0205099
  • Sandhu, K. S., & Siroha, A. K. (2017). Relationships between physicochemical, thermal, rheological and in vitro digestibility properties of starches from pearl millet cultivars. LWT - Food Science & Technology. 83, 213–224. https://doi.org/10.1016/j.lwt.2017.05.015
  • Shi, X. Q., Chen, H., Zhang, L., Qiu, S. Y., & Wei, C. Y. (2021). Research progress of fermented wine with the medicinal and food homologous raw materials. Food and Fermentation Sciences Technology. 57, 120–129. https://doi.org/10.3969/j.issn.1674-506X.2021.03-019
  • Siracusa, L., Napoli, E., Tuttolomondo, T., Licata, M., Bella, S. L., Gennaro, M. C., Ruberto, G., Sarno, M., Sperlinga, E., & Ruberto, G. (2019). A two-year bio-agronomic and chemotaxonomic evaluation of wild Sicilian myrtle (Myrtus communis L.) berries and leaves. Chemistry & Biodiversity. 16(3), e1800575. https://doi.org/10.1002/cbdv.201800575
  • Sun, C., Zheng, M. Z., Xu, X. Y., Cai, D., Liu, M. H., Cao, Y., & Liu, J. S. (2021). Effect of Auricularia cornea polysaccharide on gelatinization, rheological and retrogradation characteristics of coarse cereal porridge. Food Science, 42, 46–51. https://doi.org/10.7506/spkx1002-6630-20191024-253
  • Surojanametakul, V., Panthavee, W., Satmalee, P., Phomkaivon, N., & Yoshihashi, T. (2019). Effect of traditional dried starter culture on morphological, chemical and physicochemical properties of sweet fermented glutinous rice products. Journal of Agricultural Science, 11(6), 43–51. https://doi.org/10.5539/jas.v11n6p43
  • Tang, Q. Y., & Feng, M. G. (2002). Practical statistical analysis and DPS data processing system. Science Press.
  • Tayeh, M., Nilwarangonn, S., Mahabusarakum, W., & Watanapokasin, R. (2017). Anti-metastatic effect of rhodomyrtone from Rhodomyrtus tomentosa on human skin cancer cells. International Journal of Oncology, 50(3), 1035–1043. https://doi.org/10.3892/ijo.2017.3845
  • Usai, M., Marchetti, M., Culeddu, N., & Mulas, M. (2020). Chemotaxonomic evaluation by volatolomics analysis of fifty-two genotypes of Myrtus communis L. Plants, 9(10), 1288. https://doi.org/10.3390/plants9101288
  • Wang, G. F., He, X. P., Zhou, F., Li, Z. J., Fang, B., Zhang, X. J., & Wang, L. (2012). Application of gold nanoparticles/TiO2 modified electrode for the electrooxidative determination of catechol in tea samples. Food Chemistry. 135, 446–451. https://doi.org/10.1016/j.foodchem.2012.04.139 2
  • Wang, W. J., Zhao, L. Y., & Tang, J. (2018). Research and development progress of new type rice wine products. China Brewing, 37, 1–4. https://doi.org/10.11882/j.issn.0254-5071.2018.05.001
  • Wen, C. K., Chen, X., Wang, Y. F., Fang, S. L., Xia, Y. F., Li, Q., Li, X. Q., & Chen, M. B. (2019). Research progress on functional components of rice wine. China Brewing. 38, 5–8.
  • Yang, W. H., Liu, S. F., Zou, M. H., & Zeng, H. (2014). Antioxidant activity of Rhodomyrtus tomentosa fruit extracts. Chinese Journal of Tropical Crops, 35, 1157–1160. https://doi.org/10.3969/j.issn.1000-2561.2014.06.20
  • Yang, Y. R., Zhong, H. Y., Yang, N., Xu, S. Z., & Yang, T. (2022). Quality improvement of sweet rice wine fermented with Rhizopus delemar on key aroma compounds content, phenolic composition, and antioxidant capacity compared to R. oryzae. Journal of Food Science and Technology, 59(6), 2339–2350. https://doi.org/10.1007/s13197-021-05250-x
  • Zhang, Z. Y., Chang, X. X., & Zhong, Q. D. (2008). Liquor qu fungus system and enzymatic system character and microbial dynamic variety during vintage. Liquor Making. 35, 24–29. https://doi.org/10.3969/j.issn.1002-8110.2008.05.011
  • Zhou, M. H., & Jia, R. (2015). Application of plackett-burma design and uniform design to the optimization of nitrogen removal performance of immobilizing micrococcus roseus. Microbiology China, 42, 1671–1678. https://doi.org/10.13344/j.microbiol.china.140951