205
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Separation and characterization of the antioxidant active component from Maillard reaction products in xylose-lysine system

, , , &
Article: 2348739 | Received 29 Jan 2024, Accepted 23 Apr 2024, Published online: 10 May 2024

References

  • Ames, J. M., 1, Bailey, R. G., & Mann, J. (1999). Analysis of furanone, pyranone, and new heterocyclic colored compounds from sugar-glycine model Maillard systems. Journal of Agricultural and Food Chemistry, 47(2), 438–8. https://doi.org/10.1021/jf980528b
  • Bailey, G., 1, Ames, J. M., & Mann, J. (2000). Identification of new heterocyclic nitrogen compounds from glucose-lysine and xylose-lysine Maillard model systems. Journal of Agricultural and Food Chemistry, 48(12), 6240–6246.
  • Benjakul, S., Lertittikul, W., & Bauer, F. (2005). Antioxidant activity of Maillard reaction products from a porcine plasma protein-sugar model system. Food Chemistry, 93(2), 189–196. https://doi.org/10.1016/j.foodchem.2004.10.019
  • Borrelli, R. C., & Fogliano, V. (2005). Bread crust melanoidins as potential prebiotic ingredients. Molecular Nutrition and Food Research, 49(7), 673–678. https://doi.org/10.1002/mnfr.200500011
  • Botsoglou, N. A., Christaki, E., Fletouris, D. J., Florou-Paneri, P., & Spais, A. B. (2002). The effect of dietary oregano essential oil on lipid oxidation in raw and cooked chicken during refrigerated storage. Meat Science, 62(2), 259–265. https://doi.org/10.1016/S0309-1740(01)00256-X
  • Caillard, R., Remondetto, G. E., & Subirade, M. (2009). Physicochemical properties and microstructure of soy protein hydrogels co-induced by Maillard type cross-linking and salts. Food Research International, 42(1), 98–106. https://doi.org/10.1016/j.foodres.2008.10.004
  • Chen, L., Cai, L.-Y., Ling-Yun, P. U., Cheng, Y.-X., & Tian, H. (2012). Study on tea polyphenols manufacturing techniques by response surface method and its antioxidant properties in vitro. China Food Additives, 1006-2513, (6), 122–127.
  • Chen, X.-M., & Kitts, D. D. (2008). Antioxidant activity and chemical properties of crude and fractionated Maillard reaction products derived from four sugar–amino acid Maillard reaction model systems. Annals of the New York Academy of Sciences, 1126(1), 220–224. https://doi.org/10.1196/annals.1433.028
  • Chen, X.-M., & Kitts, D. D. (2011). Correlating changes that occur in chemical properties with the generation of antioxidant capacity in different sugar-amino acid Maillard reaction models. Journal of Food Science, 76(6), C831–C837. https://doi.org/10.1111/j.1750-3841.2011.02215.x
  • Dai, K., Wang, J., Luo, Y., Tu, Y., Ren, F., & Zhang, H. (2023). Characteristics and functional properties of Maillard reaction products from α-lactalbumin and polydextrose. Foods, 12(15), 2866. https://doi.org/10.3390/foods12152866
  • Doroshenko, I., Pogorelov, V., & Sablinskas, V. (2013). Infrared absorption spectra of monohydric alcohols. Dataset Papers in Chemistry, 2013, 329406. https://doi.org/10.7167/2013/329406
  • Du, R. M., Liu, M. S., & He, W. P. (2004). Natural and functional food additive—tea polyphenol. China Food Additives, 2(3), 56–60.
  • Farhat, I. A., Orset, S., Moreau, P., & Blanshard, J. M. V. (1998). FTIR study of hydration phenomena in protein–sugar systems. Journal of Colloid and Interface Science, 207(2), 200–208. https://doi.org/10.1006/jcis.1998.5751
  • Feng, J., Berton-Carabin, C. C., Fogliano, V., & Schroën, K. (2022). Maillard reaction products as functional components in oil-in-water emulsions: A review highlighting interfacial and antioxidant properties. Trends in Food Science & Technology, 121, 129–141. https://doi.org/10.1016/j.tifs.2022.02.008
  • Finot, P. A., Aeschbacher, H. U., Hurrell, R. F., & Et, A. (1900). The Maillard reaction in food processing, human nutrition and physiology [M]. Birkhauser.
  • Gu, F.-L., Kim, J. M., Abbas, S., Zhang, X.-M., Xia, S.-Q., & Chen, Z.-X. (2010). Structure and antioxidant activity of high molecular weight Maillard reaction products from casein–glucose. Food Chemistry, 120(2), 505–511. https://doi.org/10.1016/j.foodchem.2009.10.044
  • Gu, F., Kim, J. M., Hayat, K., Xia, S., Feng, B., & Zhang, X. (2009). Characteristics and antioxidant activity of ultrafiltrated Maillard reaction products from a casein–glucose model system. Food Chemistry, 117(1), 48–54. https://doi.org/10.1016/j.foodchem.2009.03.074
  • Gu, R. Y., Zhang, S. F., Liu, Y. Y., Wang, G. L., Wu, C., & CHU, Z. J. (2008). Study on Anti-oxidation and Bacteriostasis of five spices essential oil. Food Science, 29(3), 106–108.
  • Haroun, A. A., & Mansour, H. F. (2008). New approaches for the reactive dyeing of the retanned carbohydrate crust leather. Dyes and Pigments, 76(1), 213–219. https://doi.org/10.1016/j.dyepig.2006.08.028
  • Hwang, I. G., Kim, H. Y., Woo, K. S., Lee, J., & Jeong, H. S. (2011). Biological activities of Maillard reaction products (MRPs) in a sugar–amino acid model system. Food Chemistry, 126(1), 221–227. https://doi.org/10.1016/j.foodchem.2010.10.103
  • Iconomidou, V. A., Chryssikos, D. G., Gionis, V., Pavlidis, M. A., Paipetis, A., & Hamodrakas, S. J. (2000). Secondary structure of chorion proteins of the teleostean fish dentex dentex by ATR FT-IR and FT-Raman spectroscopy. Journal of Structural Biology, 132(2), 112–122. https://doi.org/10.1006/jsbi.2000.4307
  • Jing, H., & Kitts, D. D. (2002). Chemical and biochemical properties of casein–sugar Maillard reaction products. Food and Chemical Toxicology, 40(7), 1007–1015. https://doi.org/10.1016/S0278-6915(02)00070-4
  • Jing, H., & Kitts, D. D. (2004). Antioxidant activity of sugar–lysine Maillard reaction products in cell free and cell culture systems. Archives of Biochemistry and Biophysics, 429(2), 154–163. https://doi.org/10.1016/j.abb.2004.06.019
  • Kim, J.-S., & Lee, Y.-S. (2009). Antioxidant activity of Maillard reaction products derived from aqueous glucose/glycine, diglycine, and triglycine model systems as a function of heating time. Food Chemistry, 116(1), 227–232. https://doi.org/10.1016/j.foodchem.2009.02.038
  • Kim, J.-S., & Lee, Y.-S. (2010). Characteristics and antioxidant activity of Maillard reaction products from fructose-glycine oligomer. Food Science and Biotechnology, 19(4), 929–940. https://doi.org/10.1007/s10068-010-0131-x
  • Kim, Y. M., Wang, M. H., & Rhee, H. I. (2004). A novel α-glucosidase inhibitor from pine bark. Carbohydrate Research, 339(3), 715–717. https://doi.org/10.1016/j.carres.2003.11.005
  • Laroque, D., Inisan, C., Berger, C., Vouland, É., Dufossé, L., & Guérard, F. (2008). Kinetic study on the Maillard reaction. Consideration of sugar reactivity. Food Chemistry, 111(4), 1032–1042. https://doi.org/10.1016/j.foodchem.2008.05.033
  • Lertittikul, W., Benjakul, S., & Tanaka, M. (2007). Characteristics and antioxidative activity of Maillard reaction products from a porcine plasma protein–glucose model system as influenced by pH. Food Chemistry, 100(2), 669–677. https://doi.org/10.1016/j.foodchem.2005.09.085
  • Liang, Y., Zhang, H., Tian, L., Shi, C., Zheng, Y., Wang, J., Tan, Y., Luo, Y., & Hong, H. (2023). Gut microbiota and metabolic profile as affected by Maillard reaction products derived from bighead carp meat hydrolysates with galactose and galacto-oligosaccharides during in vitro pig fecal fermentation. Food Chemistry, 398, 133905. https://doi.org/10.1016/j.foodchem.2022.133905
  • Lin, S.-Y., Chen, K.-S., & Liang, R.-C. (1999). Thermal micro ATR/FT-IR spectroscopic system for quantitative study of the molecular structure of poly(N-isopropylacrylamide) in water. Polymer, 40(10), 2619–2624. https://doi.org/10.1016/S0032-3861(98)00512-6
  • Manzocco, L., Calligaris, S., Mastrocola, D., Nicoli, M. C., & Lerici, C. R. (2000). Review of non-enzymatic browning and antioxidant capacity in processed foods. Trends in Food Science & Technology, 11(9), 340–346. https://doi.org/10.1016/S0924-2244(01)00014-0
  • Manzocco, L., Calligaris, S., Mastrocola, D., Nicoli, M. C., & Lerici, C. R. (2001). Review of non-enzymatic browning and antioxidant capacity in processed foods. Trends in Food Science and Technology, 11(9–10), 340–346. https://doi.org/10.1016/S0924-2244(01)00014-0
  • Mondaca-Navarro, B. A., Ávila-Villa, L. A., González-Córdova, A. F., López‐Cervantes, J., Sánchez‐Machado, D. I., Campas‐Baypoli, O. N., & Rodríguez‐Ramírez, R. (2017). Antioxidant and chelating capacity of Maillard reaction products in amino acid-sugar model systems: Applications for food processing. Journal of the Science of Food and Agriculture, 97(11), 3522–3529. https://doi.org/10.1002/jsfa.8206
  • Mondaca-Navarro, B. A., Torres-Arreola, W., Ávila-Villa, L. A., Villa‐Lerma, A. G., Hernández‐Mendoza, A., Wall‐Medrano, A., & Ramírez, R. R. (2020). Obtaining glycoconjugates of marine origin via Maillard reaction and their cytotoxic effect: An alternative for the use of animal byproducts. Journal of the Science of Food and Agriculture, 100(7), 3228–3235. https://doi.org/10.1002/jsfa.10359
  • Morales, F. J., & Jiménez-Pérez, S. (2001). Free radical scavenging capacity of Maillard reaction products as related to colour and fluorescence. Food Chemistry, 72(1), 119–125. https://doi.org/10.1016/S0308-8146(00)00239-9
  • Morales, F. J., & Jiménez-Pérez, S. (2004a). Peroxyl radical scavenging activity of melanoidins in aqueous systems. European Food Research and Technology, 218(6), 515–520. https://doi.org/10.1007/s00217-004-0896-3
  • Morales, F. J., & Jiménez-Pérez, S. (2004b). Peroxyl radical scavenging activity of melanoidins in aqueous systems. European Food Research and Technology, 218(6), 515–520. https://doi.org/10.1007/s00217-004-0896-3
  • Ohe, T., & Yoshimura, Y. (2013). Coloration of polyamide fibers in an aqueous solution by Maillard reaction. Textile Research Journal, 84(5), 539–545. https://doi.org/10.1177/0040517513503731
  • Oh, Y. C., Hartman, T. G., & Ho, C. T. (1992). Volatile compounds generated from the Maillard reaction of pro-gly, gly-pro, and a mixture of glycine and proline with glucose. Journal of Agricultural and Food Chemistry, 40(10), 1878–1880. https://doi.org/10.1021/jf00022a030
  • Oh, Y. C., Shu, C. K., & Ho, C. T. (1991). Some volatile compounds formed from thermal interaction of glucose with glycine, diglycine, triglycine, and tetraglycine. Journal of Agricultural and Food Chemistry, 39(9), 1553–1554. https://doi.org/10.1021/jf00009a003
  • Osada, Y., & Shibamoto, T. (2006). Antioxidative activity of volatile extracts from Maillard model systems. Food Chemistry, 98(3), 522–528. https://doi.org/10.1016/j.foodchem.2005.05.084
  • Oyaizu, M. (1988). Antioxidative activities of browning products of glucosamine fractionated by organic solvent and thin-layer chromatography. Nippon Shokuhin Kogyo Gakkaishi, 35(11), 771–775. https://doi.org/10.3136/nskkk1962.35.11_771
  • PEI, H. R., Han, X., & Cao, X. (2011). Analysis of the components of thymus essential oil and its antioxidant and antibacterial activity. Journal of Chinese Food Science, 11(5), 182–188.
  • Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., & Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine, 26(9), 1231–1237. https://doi.org/10.1016/S0891-5849(98)00315-3
  • Rufia´n-Henares, J. A., & Morales, F. J. (2007). Effect of in vitro enzymatic digestion on antioxidant activity of coffee melanoidins and fractions. Journal of Agricultural and Food Chemistry, 55(24), 10016–10021. https://doi.org/10.1021/jf0718291
  • Shon, M.-Y., Kim, T.-H., & Sung, N.-J. (2003). Antioxidants and free radical scavenging activity of phellinus baumii (Phellinus of hymenochaetaceae) extracts. Food Chemistry, 82(4), 593–597. https://doi.org/10.1016/S0308-8146(03)00015-3
  • Singh, N., & Rajini, P. S. (2004). Free radical scavenging activity of an aqueous extract of potato peel. Food Chemistry, 85(4), 611–616. https://doi.org/10.1016/j.foodchem.2003.07.003
  • Somoza, V. (2005). Five years of research on health risks and benefits of Maillard reaction products: An update. Molecular Nutrition and Food Research, 49(7), 663–672. https://doi.org/10.1002/mnfr.200500034
  • Trézl, L., Horváth, V., Lanczki, M., Vida, C., Rusznák, I., Tóke, L., & Bakó, P. (1995). Increase in dye pick-up of wool caused by the Maillard reaction. Journal of the Society of Dyers and Colourists, 111(9), 293–297. https://doi.org/10.1111/j.1478-4408.1995.tb01745.x
  • Wagner, K. H., Reichhold, S., Koschutnig, K., Chériot, S., & Billaud, C. (2007). The potential antimutagenic and antioxidant effects of Maillard reaction products used as “natural antibrowning” agents. Molecular Nutrition and Food Research, 51(4), 496–504. https://doi.org/10.1002/mnfr.200600141
  • Wang, H. Y., Liu, H. Y., & Han, S. (2011). Study on application of tea polyphenols extracts in preservation of chilling beef. Journal of Hebei University of Science and Technology, 32(2), 197–200.
  • Wang, D., & Xu, H. (2008). Extraction of thymus quinpuecostatus oil by supercritical CO2 and its antioxidation effects. Food Science, 29(1), 162–164.
  • Wang, Y. F., Xu, P., & Li, J. (2010). Study on the synergistic effect of tea polyacids and several natural antioxidant substances. Tea Science, 30(2), 109–114.
  • Wijewickreme, A. N., Kitts, D. D., & Durance, T. D. (1997a). Reaction conditions in uence the elementary composition and metal chelating affinity of nondialyzable model Maillard reaction products. Journal of Agricultural and Food Chemistry, 45(12), 4577–4583. https://doi.org/10.1021/jf970041n
  • Wijewickreme, A. N., Kitts, D. D., & Durance, T. D. (1997b). Reaction conditions influence the elementary composition and metal chelating affinity of nondialyzable model maillard reaction products. Journal of Agricultural and Food Chemistry, 45(12), 4577–4583. https://doi.org/10.1021/jf970041n
  • Wong, S. P., Leong, L. P., & William Koh, J. H. (2006). Antioxidant activities of aqueous extracts of selected plants. Food Chemistry, 99(4), 775–783. https://doi.org/10.1016/j.foodchem.2005.07.058
  • Yen, G.-C., & Hsieh, P.-P. (1995). Antioxidative activity and scavenging effects on active oxygen of xylose-lysine maillard reaction products. Journal of the Science of Food and Agriculture, 67(3), 415–420. https://doi.org/10.1002/jsfa.2740670320
  • Yilmaz, Y., & Toledo, R. (2005). Antioxidant activity of water-soluble Maillard reaction products. Food Chemistry, 93(2), 273–278. https://doi.org/10.1016/j.foodchem.2004.09.043
  • Yoshimura, Y., Iijima, T., Watanabe, T., & Nakazawa, H. (1997). Antioxidative effect of Maillard reaction products using glucose−glycine model system. Journal of Agricultural and Food Chemistry, 45(10), 4106–4109. https://doi.org/10.1021/jf9609845
  • Zhang, W., & Tang, R. C. (2018). Application of the products from the Maillard reaction of polyglutamic acid and glucose to prepare colored and bioactive silk. Polymers (Basel), 10(6), 648. https://doi.org/10.3390/polym10060648
  • Zhang, Y. L., & Zhang, L. (2014). Study on antioxidant activities of maillard reaction products with xylose and four amino acids. China Condiment, 39(10), 65–75.
  • Zhang, Y.-L., & Zhou, W.-Q. (2013). Application of uniform design optimizing antioxidant activity of Maillard reaction products derived from casein and xylose. Shipin Gongye (Shanghai, China), 34(1), 27–30.