158
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Protective effect and molecular mechanism of four isosteroid alkaloids from Fritillariae Cirrhosae Bulbus on cigarette smoke extract-induced oxidative stress injury in A549 cells

ORCID Icon, , , , & ORCID Icon
Article: 2352579 | Received 09 Jan 2024, Accepted 02 May 2024, Published online: 21 May 2024

References

  • Barnes, P. (2020). Oxidative stress-based therapeutics in COPD. Redox Biology, 33, 101544. https://doi.org/10.1016/j.redox.2020.101544
  • Bjorklund, G., Tinkov, A., Hosnedlova, B., Kizek, R., Ajsuvakova, O., Chirumbolo, S., Skalnaya, M. G., Peana, M., Dadar, M., El-Ansary, A., Qasem, H., Adams, J. B., Aaseth, J., & Skalny, A. V. (2020). The role of glutathione redox imbalance in autism spectrum disorder: A review. Free Radical Biology and Medicine, 160, 149–11. https://doi.org/10.1016/j.freeradbiomed.2020.07.017
  • Chanda, D., Otoupalova, E., Smith, S., Volckaert, T., De Langhe, S., & Thannickal, V. (2019). Developmental pathways in the pathogenesis of lung fibrosis. Molecular Aspects of Medicine, 65, 56–69. https://doi.org/10.1016/j.mam.2018.08.004
  • Chen, Y., Guo, S., Guan, Y., Li, M., An, Y., & Liu, H. (2019). The research progress of medicinal plants fritillaria. Molecular Plant Breeding, 17(18), 6198–6206. https://doi.org/10.13271/j.mpb.017.006198
  • Dang, X., He, B., Ning, Q., Liu, Y., Guo, J., Niu, G., & Chen, M. (2020). Alantolactone suppresses inflammation, apoptosis and oxidative stress in cigarette smoke-induced human bronchial epithelial cells through activation of Nrf2/HO-1 and inhibition of the NF-kappaB pathways. Respiratory Research, 21(1), 95–106. https://doi.org/10.1186/s12931-020-01358-4
  • Hu, Z., Wang, F., Wu, Z., Gu, H., Dong, N., Jiang, X., Xu, J., Wu, Z., Wechsler, D. S., & Zheng, D. (2018). FOXO3a-dependent up-regulation of Mxi1-0 promotes hypoxia-induced apoptosis in endothelial cells. Cellular Signalling, 51, 233–242. https://doi.org/10.1016/j.cellsig.2018.08.009
  • Hwang, J., Yao, H., Caito, S., Sundar, I., & Rahman, I. (2013). Redox regulation of SIRT1 in inflammation and cellular senescence. Free Radical Biology and Medicine, 61, 95–110. https://doi.org/10.1016/j.freeradbiomed.2013.03.015
  • Ke, Z., Tan, S., Li, H., Jiang, S., Li, Y., Chen, R., & Li, M. (2022). Tangeretin improves hepatic steatosis and oxidative stress through the Nrf2 pathway in high fat diet-induced nonalcoholic fatty liver disease mice. Food & Function, 13(5), 2782–2790. https://doi.org/10.1039/d1fo02989d
  • Kenyon, C. (2018). The first long-lived mutants: Discovery of the insulin/IGF-1 pathway for ageing. Philosophical Transactions of the Royal Society B: Biological Sciences, 366(1561), 9–16. https://doi.org/10.1098/rstb.2010.0276
  • Lan, C., Zhu, Y., Zhou, J., Wu, R., Yang, N., Bao, Q., Xu, X., & Yin, G. (2022). Luteolin alleviates epithelial-mesenchymal transformation induced by oxidative injury in ARPE-19 cell via Nrf2 and AKT/GSK-3beta pathway. Oxidative Medicine and Cellular Longevity, 2022, 1–12. https://doi.org/10.1155/2022/2265725
  • Lehtinen, M., Yuan, Z., Boag, P., Yang, Y., Villen, J., Becker, E., DiBacco, S., de la Iglesia, N., Gygi, S., Blackwell, T. K., & Bonni, A. (2006). A conserved MST-FOXO signaling pathway mediates oxidative-stress responses and extends life span. Cell, 125(5), 987–1001. https://doi.org/10.1016/j.cell.2006.03.046
  • Li, D., Ni, H., Rui, Q., Gao, R., & Chen, G. (2018). MST1: Function and mechanism in brain and myocardial ischemia reperfusion injury. Current Neuropharmacology, 16(9), 1358–1364. https://doi.org/10.2174/1570159X16666180516095949
  • Li, H., Shang, Z., Liu, X., Qiao, Y., Wang, K., & Qiao, J. (2021). Clostridium butyricum alleviates Enterotoxigenic Escherichia coli K88-Induced oxidative damage through regulating the p62-Keap1-Nrf2 Signaling Pathway and remodeling the cecal microbial community. Frontiers in Immunology, 12, 1–15. https://doi.org/10.3389/fimmu.2021.771826
  • Li, Y., Xing, Y., Li, X., Zhang, J., & Guo, H. (2016). Redox regulation of FOXO3a transcription factor. Chinese Pharmacological Bulletin, 32(9), 1203–1207. https://doi.org/10.3969/j.issn.1001-1978.2016.09.005
  • Liao, L., Gong, L., Zhou, M., Xue, X., Li, Y., Peng, C., & Lopez Malo, D. (2021). Leonurine ameliorates oxidative stress and insufficient angiogenesis by regulating the PI3K/Akt-eNOS signaling pathway in H2O2-induced HUVECs. Oxidative Medicine and Cellular Longevity, 2021, 1–12. https://doi.org/10.1155/2021/9919466
  • Lin, B., Ji, H., Li, P., Fang, W., & Jiang, Y. (2006). Inhibitors of acetylcholine esterase in vitro - Screening of steroidal alkaloids from fritillaria species. Planta Medica, 72(9), 814–818. https://doi.org/10.1055/s-2006-947168
  • Liu, C., Zhen, D., Du, H., Gong, G., Wu, Y., Ma, Q., & Quan, Z. S. (2022). Synergistic anti-inflammatory effect of peimine, peiminine, and forsythoside a combination on LPS-induced acute lung injury by inhibition of the IL-17-NF-kappaB/MAPK pathway activation. Journal of Ethnopharmacology, 295, 115354. https://doi.org/10.1016/j.jep.2022.115343
  • Liu, S., Yang, T., Tse, W. M., Tse, K. W. G., Zhou, T., Wang, S., & Ye, B. (2020a). Isosteroid alkaloids from Fritillaria cirrhosa bulbus as inhibitors of cigarette smoke-induced oxidative stress. Fitoterapia, 140, 104434. https://doi.org/10.1016/j.fitote.2019.104434
  • Liu, S., Yang, T., Tse, W. M., Tse, K. W. G., Zhou, T., Wang, S., & Ye, B. (2020b). Isosteroid alkaloids with different chemical structures from fritillariae cirrhosae bulbus alleviate LPS-induced inflammatory response in RAW 264.7 cells by MAPK signaling pathway. International Immunopharmacology, 78, 106047. https://doi.org/10.1016/j.intimp.2019.106047
  • Ma, Y., Ruan, Y., Wang, Y., & Wu, S. (2018). Polydatin inhibits cell proliferation and expressions of inflammatory cytokines in THP-1 cells induced by ox-LDL via up-regulating SIRT1. Chinese Journal of Cellular and Molecular Immunology, 34(3), 193–198. https://doi.org/10.13423/j.cnki.cjcmi.008557
  • Mishra, V., Banga, J., & Silveyra, P. (2018). Oxidative stress and cellular pathways of asthma and inflammation: Therapeutic strategies and pharmacological targets. Pharmacology & Therapapeutics, 181, 169–182. https://doi.org/10.1016/j.pharmthera.2017.08.011
  • Okumura, N., Ito, T., Degawa, T., Moriyama, M., & Moriyama, H. (2021). Royal jelly protects against epidermal stress through upregulation of the NQO1 expression. International Journal of Molecular Sciences, 22(23), 12973. https://doi.org/10.3390/ijms222312973
  • Ornatowski, W., Lu, Q., Yegambaram, M., Garcia, A., Zemskov, E., Maltepe, E., Fineman, J. R., Wang, T., & Black, S. M. (2020). Complex interplay between autophagy and oxidative stress in the development of pulmonary disease. Redox Biology, 36, 101679. https://doi.org/10.1016/j.redox.2020.101679
  • Ryter, S., Bhatia, D., & Choi, M. (2019). Autophagy: A lysosome-dependent process with implications in cellular redox homeostasis and human disease. Antioxidants & Redox Signaling, 30(1), 138–159. https://doi.org/10.1089/ars.2018.7518
  • Saunders, R. M., Biddle, M., Amrani, Y., & Brightling, C. (2022). Stressed out - the role of oxidative stress in airway smooth muscle dysfunction in asthma and COPD. Free Radical Biology and Medicine, 185, 97–119. https://doi.org/10.1016/j.freeradbiomed.2022.04.011
  • Tang, Z., Ju, Y., Dai, X., Ni, N., Liu, Y., Zhang, D., Gao, H., Sun, H., Zhang, J., & Gu, P. (2021). HO-1-mediated ferroptosis as a target for protection against retinal pigment epithelium degeneration. Redox Biology, 43, 101971. https://doi.org/10.1016/j.redox.2021.101971
  • Tsai, C., Chen, G., Chen, Y., Shen, C., Lu, D., Yang, L., Yeh, W., & Yeh, W.-L. (2021). Regulatory effect of quercetin on M1/M2 macrophage polarization and oxidative/antioxidative balance. Nutrients, 14(1), 67–88. https://doi.org/10.3390/nu14010067
  • Wachter, K., Navarrete Santos, A., Grosskopf, A., Baldensperger, T., Glomb, M. A., Szabo, G., & Simm, A. (2021). AGE-Rich bread crust extract boosts oxidative stress interception via stimulation of the NRF2 pathway. Nutrients, 13(11), 3874. https://doi.org/10.3390/nu13113874
  • Wang, D., Du, Q., Li, H., & Wang, S. (2016). The isosteroid alkaloid imperialine from bulbs of Fritillaria cirrhosa mitigates pulmonary functional and structural impairment and suppresses inflammatory response in a COPD-Like rat model. Mediators of Inflammation, 2016, 1–17. https://doi.org/10.1155/2016/8369704
  • Wang, D., Zhu, J., Wang, S., Wang, X., Ou, Y., Wei, D., & Li, X. (2011). Antitussive, expectorant and anti-inflammatory alkaloids from Bulbus Fritillariae Cirrhosae. Fitoterapia, 82(8), 1290–1294. https://doi.org/10.1016/j.fitote.2011.09.006
  • Wang, G., Wang, Y., Yang, Q., Xu, C., Zheng, Y., Wang, L., Wu, J., Zeng, M., & Luo, M. (2022). Metformin prevents methylglyoxal-induced apoptosis by suppressing oxidative stress in vitro and in vivo. Cell Death & Disease, 13(1), 29–40. https://doi.org/10.1038/s41419-021-04478-x
  • Wang, M., Huang, W., Chen, L., Yeh, K., Lin, C., & Liou, C. (2022). Sophoraflavanone G from Sophora flavescens ameliorates allergic airway inflammation by suppressing Th2 response and oxidative stress in a murine asthma model. International Journal of Molecular Sciences, 23(11), 6104. https://doi.org/10.3390/ijms23116104
  • Wilk, A., Urbanska, K., Yang, S., Wang, J., Amini, S., Valle, L., Reiss, K., Meggs, L., & Reiss, K. (2010). Insulin-like growth factor-I–forkhead box O transcription factor 3a counteracts high glucose/tumor necrosis factor-α-mediated neuronal damage: Implications for human immunodeficiency virus encephalitis. Journal of Neuroscience Research, 89(2), 183–198. https://doi.org/10.1002/jnr.22542
  • Wu, F., Li, Z., Dong, C., Wang, L., Yang, Q., Yin, Z., & Li, L. (2019). Qibai Pingfei capsule alleviates inflammation and oxidative stress in a chronic obstructive pulmonary disease rat model with syndromes of Qi deficiency and phlegm and blood stasis by regulating the SIRT1/FoxO3a pathway. Chinese Journal of Cellular and Molecular Immunology, 35(2), 115–120. https://doi.org/10.13423/j.cnki.cjcmi.008771
  • Xiao, X., Tong, Z., Zhang, Y., Zhou, H., Luo, M., Hu, T., Hu, L., Kong, L., Liu, Z., Yu, C., Huang, Z., & Hu, L. (2022). Novel prenylated indole alkaloids with neuroprotection on SH-SY5Y cells against oxidative stress targeting Keap1–Nrf2. Marine Drugs, 20(3), 191–206. https://doi.org/10.3390/md20030191
  • Xu, L., Fan, L., Jiang, S., Yang, X., Wang, X., & Yang, C. (2022). Recent progress of chemical constituents and pharmacological effect of Fritillaria. Chinese Journal of Medicinal Chemistry, 32(1), 61–73. https://doi.org/10.14142/j.cnki.cn21-1313/r.2022.01.010
  • Yang, J., Tang, X., Ke, X., Dai, Y., & Shi, J. (2022). Triptolide suppresses NF-kappaB-mediated inflammatory responses and activates expression of Nrf2-mediated antioxidant genes to alleviate caerulein-induced acute pancreatitis. International Journal of Molecular Sciences, 23(3), 1252–1265. https://doi.org/10.3390/ijms23031252
  • Yao, H., Xie, Q., He, Q., Zeng, L., Long, J., Gong, Y., & Gao, Y. (2022). Pretreatment with panaxatriol saponin attenuates mitochondrial apoptosis and oxidative stress to facilitate treatment of myocardial ischemia-reperfusion injury via the regulation of Keap1/Nrf2 activity. Oxidative Medicine and Cellular Longevity, 2022, 1–20. https://doi.org/10.1155/2022/9235358
  • Yeum, H., Lee, Y., Kim, S., Roh, S., Lee, J., & Seo, Y. (2007). Fritillaria cirrhosa, anemarrhena asphodeloides, Lee-Mo-Tang and cyclosporine a inhibit ovalbumin-induced eosinophil accumulation and Th2-mediated bronchial hyperresponsiveness in a murine model of asthma. Basic & Clinical Pharmacology & Toxicology, 100(3), 205–213. https://doi.org/10.1111/j.1742-7843.2007.00043.x
  • Yi, X., Li, T., Wei, X., & He, Z. (2022). Erythromycin attenuates oxidative stress-induced cellular senescence via the PI3K-mTOR signaling pathway in chronic obstructive pulmonary disease. Frontiers in Pharmacology, 13, 1043474. https://doi.org/10.3389/fphar.2022.1043474
  • Yuan, S., Tse, W. M., Tse, K. W. G., Xu, F. C., Xie, H. J., Aga, E. B., Xiong, H., & Ye, B. G. (2022). Ethanol extracts of bulbus of Fritillaria cirrhosa protects against pulmonary fibrosis in rats induced by bleomycin. Journal of Functional Foods, 97, 105239. https://doi.org/10.1016/j.jff.2022.105239
  • Zhang, Y., Han, Y., He, J., Ouyang, K., Zhao, M., Cai, L., Wang, W., Meng, W., Chen, L., & Wang, W. (2021). Digestive properties and effect of Chimonanthus nitens Oliv polysaccharides on antioxidant effect in vitro and in immunocompromised mice. International Journal of Biological Macromolecules, 185, 306–316. https://doi.org/10.1016/j.ijbiomac.2021.06.114
  • Zhang, Y., Li, T., Pan, M., Wang, W., Huang, W., Yuan, Y., Xie, Z., Chen, Y., Peng, J., Li, X., & Meng, Y. (2022). SIRT1 prevents cigarette smoking-induced lung fibroblasts activation by regulating mitochondrial oxidative stress and lipid metabolism. Journal of Translational Medicine, 20(1), 222. https://doi.org/10.1186/s12967-022-03408-5
  • Zhao, Y., Jiang, Q., Zhang, X., Zhu, X., Dong, X., Shen, L., Zhu, L., Niu, L., Chen, L., Zhang, M., Jiang, J., Chen, D., & Zhu, L. (2021). L-Arginine alleviates LPS-Induced oxidative stress and apoptosis via activating SIRT1-AKT-Nrf2 and SIRT1-FOXO3a signaling pathways in C2C12 myotube cells. Antioxidants, 10(12), 1–18. https://doi.org/10.3390/antiox10121957
  • Zhao, Z., Wang, Z., Fang, X., Wang, T., Luo, Z., & Xie, T. (2022). Effect of sodium arsenite on oxidative stress, apoptosis, and the expression of MST1, MST2 in mouse hepatocytes AML12. Journal of Guizhou Medical University, 47(1), 7–12. https://doi.org/10.19367/j.cnki.2096-8388.2022.01.002
  • Zheng, W., Song, Z., Li, S., Hu, M., Shaukat, H., & Qin, H. (2021). Protective effect of sesamol against liver oxidative stress and inflammation in high-fat diet-induced hepatic steatosis. Nutrients, 13(12), 4484. https://doi.org/10.3390/nu13124484
  • Zhou, T., Hu, Y., Wang, Y., Sun, C., Zhong, Y., Liao, J., & Wang, G. (2019). Fine particulate matter (PM2.5) aggravates apoptosis of cigarette-inflamed bronchial epithelium in vivo and vitro. Environmental Pollution, 248, 1–9. https://doi.org/10.1016/j.envpol.2018.11.054
  • Zhuang, C., Wang, Y., Zhang, Y., & Xu, N. (2018). Oxidative stress in osteoarthritis and antioxidant effect of polysaccharide from angelica sinensis. International Journal of Biological Macromolecules, 115, 281–286. https://doi.org/10.1016/j.ijbiomac.2018.04.083