241
Views
0
CrossRef citations to date
0
Altmetric
Research Article

The effects of highly bioavailable curcumin in downhill running-induced muscle damage model

, , , &
Article: 2353320 | Received 21 Feb 2024, Accepted 05 May 2024, Published online: 20 May 2024

References

  • Alvarez, A. M., DeOcesano-Pereira, C., Teixeira, C., & Moreira, V. (2020). IL-1β and TNF-α modulation of proliferated and committed myoblasts: IL-6 and COX-2-Derived prostaglandins as key actors in the mechanisms involved. Cells, 9(9), 2005. https://doi.org/10.3390/cells9092005
  • Authority, E. F. S. (2014). Refined exposure assessment for curcumin (E 100). EFSA Journal, 12(10), 3876.
  • Bondesen, B. A., Mills, S. T., Kegley, K. M., & Pavlath, G. K. (2004). The COX-2 pathway is essential during early stages of skeletal muscle regeneration. American Journal of Physiology Cell Physiology, 287(2), C475–11. https://doi.org/10.1152/ajpcell.00088.2004
  • Cannon, J. G., Fielding, R. A., Fiatarone, M. A., Orencole, S. F., Dinarello, C. A., & Evans, W. J. (1989). Increased interleukin 1 beta in human skeletal muscle after exercise. The American Journal of Physiology, 257(2 Pt 2), R451–455. https://doi.org/10.1152/ajpregu.1989.257.2.R451
  • Chen, Y., Wang, J., Jing, Z., Ordovas, J. M., Wang, J., & Shen, L. (2022). Anti-fatigue and anti-oxidant effects of curcumin supplementation in exhaustive swimming mice via NRF2/Keap 1 signal pathway. Current Research in Food Science, 5, 1148–1157. https://doi.org/10.1016/j.crfs.2022.07.006
  • Chung, H., Yoon, S. H., Cho, J. Y., Yeo, H. K., Shin, D., & Park, J. Y. (2021). Comparative pharmacokinetics of Theracurmin, a highly bioavailable curcumin, in healthy adult subjects. International Journal of Clinical Pharmacology and Therapeutics, 59(10), 684–690. https://doi.org/10.5414/CP204058
  • Davis, J. M., Murphy, E. A., Carmichael, M. D., Zielinski, M. R., Groschwitz, C. M., Brown, A. S., Gangemi, J. D., Ghaffar, A., & Mayer, E. P. (2007). Curcumin effects on inflammation and performance recovery following eccentric exercise-induced muscle damage. American Journal of Physiology Regulatory, Integrative and Comparative Physiology, 292(6), R2168–2173. https://doi.org/10.1152/ajpregu.00858.2006
  • Fernandez-Lazaro, D., Mielgo-Ayuso, J., Cordova Martinez, A., & Seco-Calvo, J. (2020). Iron and physical activity: Bioavailability enhancers, properties of Black Pepper (Bioperine®) and potential applications. Nutrients, 12(6), 1886. https://doi.org/10.3390/nu12061886
  • Fernandez-Lazaro, D., Mielgo-Ayuso, J., Seco Calvo, J., Cordova Martinez, A., Caballero Garcia, A., & Fernandez-Lazaro, C. I. (2020). Modulation of exercise-induced muscle damage, inflammation, and oxidative markers by curcumin supplementation in a physically active population: A systematic review. Nutrients, 12(2), 501. https://doi.org/10.3390/nu12020501
  • Fielding, R. A., Manfredi, T. J., Ding, W., Fiatarone, M. A., Evans, W. J., & Cannon, J. G. (1993). Acute phase response in exercise. III. Neutrophil and IL-1 beta accumulation in skeletal muscle. The American Journal of Physiology, 265(1 Pt 2), R166–172. https://doi.org/10.1152/ajpregu.1993.265.1.R166
  • Forcina, L., Cosentino, M., & Musaro, A. (2020). Mechanisms regulating muscle regeneration: Insights into the interrelated and time-dependent phases of tissue healing. Cells, 9(5), 1297. https://doi.org/10.3390/cells9051297
  • Funamoto, M., Shimizu, K., Sunagawa, Y., Katanasaka, Y., Miyazaki, Y., Kakeya, H., Yamakage, H., Satoh-Asahara, N., Wada, H., Hasegawa, K., & Morimoto, T. (2019). Effects of highly absorbable curcumin in patients with impaired glucose tolerance and non-insulin-dependent diabetes mellitus. Journal of Diabetes Research, 2019, 8208237. https://doi.org/10.1155/2019/8208237
  • Funamoto, M., Sunagawa, Y., Katanasaka, Y., Miyazaki, Y., Imaizumi, A., Kakeya, H., Yamakage, H., Satoh-Asahara, N., Komiyama, M., Wada, H., Hasegawa, K., & Morimoto, T. (2016). Highly absorptive curcumin reduces serum atherosclerotic low-density lipoprotein levels in patients with mild COPD. International Journal of Chronic Obstructive Pulmonary Disease, 11, 2029–2034. https://doi.org/10.2147/COPD.S104490
  • Garcea, G., Berry, D. P., Jones, D. J., Singh, R., Dennison, A. R., Farmer, P. B., Sharma, R. A., Steward, W. P., & Gescher, A. J. (2005). Consumption of the putative chemopreventive agent curcumin by cancer patients: Assessment of curcumin levels in the colorectum and their pharmacodynamic consequences. Cancer Epidemiology, Biomarkers & Prevention: A Publication of the American Association for Cancer Research, Cosponsored by the American Society of Preventive Oncology, 14(1), 120–125. https://doi.org/10.1158/1055-9965.120.14.1
  • Ghafouri-Fard, S., Shoorei, H., Bahroudi, Z., Hussen, B. M., Talebi, S. F., Taheri, M., & Ayatollahi, S. A. (2022). Nrf2-related therapeutic effects of curcumin in different disorders. Biomolecules, 12(1), 82. https://doi.org/10.3390/biom12010082
  • Gornicka, J., Mika, M., Wroblewska, O., Siudem, P., & Paradowska, K. (2023). Methods to improve the solubility of curcumin from turmeric. Life (Basel), 13(1), 207. https://doi.org/10.3390/life13010207
  • Hamada, K., Vannier, E., Sacheck, J. M., Witsell, A. L., & Roubenoff, R. (2005). Senescence of human skeletal muscle impairs the local inflammatory cytokine response to acute eccentric exercise. FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology, 19(2), 264–266. https://doi.org/10.1096/fj.03-1286fje
  • Haramizu, S., Ota, N., Hase, T., & Murase, T. (2013). Catechins suppress muscle inflammation and hasten performance recovery after exercise. Medicine and Science in Sports and Exercise, 45(9), 1694–1702. https://doi.org/10.1249/MSS.0b013e31828de99f
  • HeeJung, P., Tadashi, H., Atsushi, I., & YoungJoo, A. (2015). Absorption improvement of curcumin powder using Theracurmin® CR-033P [absorption improvement of curcumin powder using Theracurmin® CR-033P]. Food Science and Industry, 48(2), 42–46. http://www.dbpia.co.kr/journal/articleDetail?nodeId=NODE06366316
  • Hegde, M., Girisa, S., BharathwajChetty, B., Vishwa, R., & Kunnumakkara, A. B. (2023). Curcumin formulations for better bioavailability: What we learned from clinical trials thus far? American Chemical Society Omega, 8(12), 10713–10746. https://doi.org/10.1021/acsomega.2c07326
  • Hirose, A., Kuwabara, Y., Kanai, Y., Kato, C., Makino, Y., Yoshi, F., & Sasaki, K. (2022). Comparative pharmacokinetics of new curcumin preparations and evidence for increased bioavailability in healthy adult participants. International Journal of Clinical Pharmacology and Therapeutics, 60(12), 530–538. https://doi.org/10.5414/CP204257
  • Huang, W. C., Chiu, W. C., Chuang, H. L., Tang, D. W., Lee, Z. M., Wei, L., Chen, F. A., & Huang, C. C. (2015). Effect of curcumin supplementation on physiological fatigue and physical performance in mice. Nutrients, 7(2), 905–921. https://doi.org/10.3390/nu7020905
  • Imaizumi, A. (2015). Highly bioavailable curcumin (Theracurmin): Its development and clinical application. PharmaNutrition, 3(4), 123–130. https://doi.org/10.1016/j.phanu.2015.08.002
  • JECFA. (2004). Curcumin. (prepared by Ivan Stankovic). Chemical and Technical Assessment Compendıum Addendum 11/Fnp 52 Add. 11/29, Monographs 1.
  • Kanai, M., Imaizumi, A., Otsuka, Y., Sasaki, H., Hashiguchi, M., Tsujiko, K., Matsumoto, S., Ishiguro, H., & Chiba, T. (2012). Dose-escalation and pharmacokinetic study of nanoparticle curcumin, a potential anticancer agent with improved bioavailability, in healthy human volunteers. Cancer Chemotherapy and Pharmacology, 69(1), 65–70. https://doi.org/10.1007/s00280-011-1673-1
  • Kanai, M., Otsuka, Y., Otsuka, K., Sato, M., Nishimura, T., Mori, Y., Kawaguchi, M., Hatano, E., Kodama, Y., Matsumoto, S., Murakami, Y., Imaizumi, A., Chiba, T., Nishihira, J., & Shibata, H. (2013). A phase I study investigating the safety and pharmacokinetics of highly bioavailable curcumin (Theracurmin) in cancer patients. Cancer Chemotherapy and Pharmacology, 71(6), 1521–1530. https://doi.org/10.1007/s00280-013-2151-8
  • Kawanishi, N., Kato, K., Takahashi, M., Mizokami, T., Otsuka, Y., Imaizumi, A., Shiva, D., Yano, H., & Suzuki, K. (2013). Curcumin attenuates oxidative stress following downhill running-induced muscle damage. Biochemical and Biophysical Research Communications, 441(3), 573–578. https://doi.org/10.1016/j.bbrc.2013.10.119
  • Kunnumakkara, A. B., Bordoloi, D., Padmavathi, G., Monisha, J., Roy, N. K., Prasad, S., & Aggarwal, B. B. (2017). Curcumin, the golden nutraceutical: Multitargeting for multiple chronic diseases. British Journal of Pharmacology, 174(11), 1325–1348. https://doi.org/10.1111/bph.13621
  • Kuwabara, Y., Hirose, A., Lee, H., Kakinuma, T., Baba, A., & Takara, T. (2023). Effects of highly bioavailable curcumin supplementation on common cold symptoms and immune and inflammatory functions in healthy Japanese subjects: A randomized controlled study. Journal of Dietary Supplements, 1–28. https://doi.org/10.1080/19390211.2023.2185723
  • Lao, C. D., Ruffin, M. T. T., Normolle, D., Heath, D. D., Murray, S. I., Bailey, J. M., Boggs, M. E., Crowell, J., Rock, C. L., & Brenner, D. E. (2006). Dose escalation of a curcuminoid formulation. BMC Complementary and Alternative Medicine, 6(1), 10. https://doi.org/10.1186/1472-6882-6-10
  • Lee, D. Y., Chun, Y. S., Kim, J. K., Lee, J. O., Ku, S. K., & Shim, S. M. (2021). Curcumin attenuates sarcopenia in chronic forced exercise executed aged mice by regulating muscle degradation and protein synthesis with antioxidant and anti-inflammatory effects. Journal of Agricultural and Food Chemistry, 69(22), 6214–6228. https://doi.org/10.1021/acs.jafc.1c00699
  • Liczbinski, P., Michalowicz, J., & Bukowska, B. (2020). Molecular mechanism of curcumin action in signaling pathways: Review of the latest research. Phytotherapy Research: PTR, 34(8), 1992–2005. https://doi.org/10.1002/ptr.6663
  • Maheshwari, R. K., Singh, A. K., Gaddipati, J., & Srimal, R. C. (2006). Multiple biological activities of curcumin: A short review. Life Sciences, 78(18), 2081–2087. https://doi.org/10.1016/j.lfs.2005.12.007
  • Manas-Garcia, L., Guitart, M., Duran, X., & Barreiro, E. (2020). Satellite cells and markers of muscle regeneration during unloading and reloading: Effects of treatment with resveratrol and curcumin. Nutrients, 12(6), 1870. https://doi.org/10.3390/nu12061870
  • Miodownik, C., Lerner, V., Kudkaeva, N., Lerner, P. P., Pashinian, A., Bersudsky, Y., Eliyahu, R., Kreinin, A., & Bergman, J. (2019). Curcumin as add-on to antipsychotic treatment in patients with chronic schizophrenia: A randomized, double-blind, placebo-controlled study. Clinical Neuropharmacology, 42(4), 117–122. https://doi.org/10.1097/wnf.0000000000000344
  • Morimoto, T., Sunagawa, Y., Katanasaka, Y., Hirano, S., Namiki, M., Watanabe, Y., Suzuki, H., Doi, O., Suzuki, K., Yamauchi, M., Yokoji, T., Miyoshi-Morimoto, E., Otsuka, Y., Hamada, T., Imaizumi, A., Nonaka, Y., Fuwa, T., Teramoto, T. … Hasegawa, K. (2013). Drinkable preparation of Theracurmin exhibits high absorption efficiency–a single-dose, double-blind, 4-way crossover study. Biological & Pharmaceutical Bulletin, 36(11), 1708–1714. https://doi.org/10.1248/bpb.b13-00150
  • Ms, S. A. B., Waldman Ph, D. H., Krings Ph, D. B., Lamberth Ph, D. J., Smith Ph, D. J., & McAllister Ph, D. M. (2020). Effect of curcumin supplementation on exercise-induced oxidative stress, inflammation, muscle damage, and muscle soreness. Journal of Dietary Supplements, 17(4), 401–414. https://doi.org/10.1080/19390211.2019.1604604
  • Muller, W. A. (2001). New mechanisms and pathways for monocyte recruitment. Journal of Experimental Medicine, 194(9), F47–51. https://doi.org/10.1084/jem.194.9.f47
  • Nakagawa, Y., Mori, K., Yamada, S., Mukai, S., Hirose, A., & Nakamura, R. (2022). The oral administration of highly-bioavailable curcumin for one year has clinical and chondro-protective effects: A randomized, double-blinded, placebo-controlled prospective study. Arthroscopy, Sports Medicine, and Rehabilitation, 4(2), e393–e402. https://doi.org/10.1016/j.asmr.2021.10.016
  • Nakhostin-Roohi, B., Nasirvand Moradlou, A., Mahmoodi Hamidabad, S., & Ghanivand, B. (2016). The effect of curcumin supplementation on selected markers of delayed onset muscle soreness (DOMS). Annals of Applied Sport Science, 4(2), 25–31. https://doi.org/10.18869/acadpub.aassjournal.4.2.25
  • Nanavati, K., Rutherfurd-Markwick, K., Lee, S. J., Bishop, N. C., & Ali, A. (2022). Effect of curcumin supplementation on exercise-induced muscle damage: A narrative review. European Journal of Nutrition, 61(8), 3835–3855. https://doi.org/10.1007/s00394-022-02943-7
  • Pawar, Y. B., Shete, G., Popat, D., & Bansal, A. K. (2012). Phase behavior and oral bioavailability of amorphous curcumin. European Journal of Pharmaceutical Sciences, 47(1), 56–64. https://doi.org/10.1016/j.ejps.2012.05.003
  • Powers, S. K., Deminice, R., Ozdemir, M., Yoshihara, T., Bomkamp, M. P., & Hyatt, H. (2020). Exercise-induced oxidative stress: Friend or foe? Journal of Sport and Health Science, 9(5), 415–425. https://doi.org/10.1016/j.jshs.2020.04.001
  • Pulido-Moran, M., Moreno-Fernandez, J., Ramirez-Tortosa, C., & Ramirez-Tortosa, M. (2016). Curcumin and health. Molecules, 21(3), 264. https://doi.org/10.3390/molecules21030264
  • Rahmani, S., Asgary, S., Askari, G., Keshvari, M., Hatamipour, M., Feizi, A., & Sahebkar, A. (2016). Treatment of non-alcoholic fatty liver disease with curcumin: A randomized placebo-controlled trial. Phytotherapy Research: PTR, 30(9), 1540–1548. https://doi.org/10.1002/ptr.5659
  • Rai, A., Kaur, M., Gombra, V., Hasan, S., & Kumar, N. (2019). Comparative evaluation of curcumin and antioxidants in the management of oral submucous fibrosis. Journal of Investigative and Clinical Dentistry, 10(4), e12464. https://doi.org/10.1111/jicd.12464
  • Ramasamy, T. S., Ayob, A. Z., Myint, H. H., Thiagarajah, S., & Amini, F. (2015). Targeting colorectal cancer stem cells using curcumin and curcumin analogues: Insights into the mechanism of the therapeutic efficacy. Cancer Cell International, 15(1), 96. https://doi.org/10.1186/s12935-015-0241-x
  • Ross, S. M. (2018). Curcuma longa (Theracumin(r)): A bioavailable form of curcumin and its cognitive benefits. Holistic Nursing Practice, 32(4), 217–220. https://doi.org/10.1097/HNP.0000000000000281
  • Sahin, K., Pala, R., Tuzcu, M., Ozdemir, O., Orhan, C., Sahin, N., & Juturu, V. (2016). Curcumin prevents muscle damage by regulating NF-kappaB and Nrf2 pathways and improves performance: An in vivo model. Journal of Inflammation Research, 9, 147–154. https://doi.org/10.2147/JIR.S110873
  • Sasaki, H., Sunagawa, Y., Takahashi, K., Imaizumi, A., Fukuda, H., Hashimoto, T., Wada, H., Katanasaka, Y., Kakeya, H., Fujita, M., Hasegawa, K., & Morimoto, T. (2011). Innovative preparation of curcumin for improved oral bioavailability. Biological & Pharmaceutical Bulletin, 34(5), 660–665. https://doi.org/10.1248/bpb.34.660
  • Saud Gany, S. L., Chin, K. Y., Tan, J. K., Aminuddin, A., & Makpol, S. (2023). Curcumin as a therapeutic agent for sarcopenia. Nutrients, 15(11), 2526. https://doi.org/10.3390/nu15112526
  • Schwane, J. A., Johnson, S. R., Vandenakker, C. B., & Armstrong, R. B. (1983). Delayed-onset muscular soreness and plasma CPK and LDH activities after downhill running. Medicine and Science in Sports and Exercise, 15(1), 51–56. https://doi.org/10.1249/00005768-198315010-00010
  • Shaikh, J., Ankola, D. D., Beniwal, V., Singh, D., & Kumar, M. N. (2009). Nanoparticle encapsulation improves oral bioavailability of curcumin by at least 9-fold when compared to curcumin administered with piperine as absorption enhancer. European Journal of Pharmaceutical Sciences, 37(3–4), 223–230. https://doi.org/10.1016/j.ejps.2009.02.019
  • Sharma, R. A., Euden, S. A., Platton, S. L., Cooke, D. N., Shafayat, A., Hewitt, H. R., Marczylo, T. H., Morgan, B., Hemingway, D., Plummer, S. M., Pirmohamed, M., Gescher, A. J., & Steward, W. P. (2004). Phase I clinical trial of oral curcumin: Biomarkers of systemic activity and compliance. Clinical Cancer Research, 10(20), 6847–6854. https://doi.org/10.1158/1078-0432.CCR-04-0744
  • Small, G. W., Siddarth, P., Li, Z., Miller, K. J., Ercoli, L., Emerson, N. D., Martinez, J., Wong, K. P., Liu, J., Merrill, D. A., Chen, S. T., Henning, S. M., Satyamurthy, N., Huang, S. C., Heber, D., & Barrio, J. R. (2018). Memory and brain amyloid and tau effects of a bioavailable form of curcumin in non-demented adults: A double-blind, placebo-controlled 18-month trial. The American Journal of Geriatric Psychiatry: Official Journal of the American Association for Geriatric Psychiatry, 26(3), 266–277. https://doi.org/10.1016/j.jagp.2017.10.010
  • Sugawara, J., Akazawa, N., Miyaki, A., Choi, Y., Tanabe, Y., Imai, T., & Maeda, S. (2012). Effect of endurance exercise training and curcumin intake on central arterial hemodynamics in postmenopausal women: Pilot study. American Journal of Hypertension, 25(6), 651–656. https://doi.org/10.1038/ajh.2012.24
  • Sugimoto, K., Ikeya, K., Bamba, S., Andoh, A., Yamasaki, H., Mitsuyama, K., Nasuno, M., Tanaka, H., Matsuura, A., Kato, M., Ishida, N., Tamura, S., Takano, R., Tani, S., Osawa, S., Nishihira, J., & Hanai, H. (2020). Highly bioavailable curcumin derivative ameliorates Crohn’s disease symptoms: A randomized, double-blind, multicenter study. Journal of Crohn’s & Colitis, 14(12), 1693–1701. https://doi.org/10.1093/ecco-jcc/jjaa097
  • Takahashi, M., Suzuki, K., Kim, H. K., Otsuka, Y., Imaizumi, A., Miyashita, M., & Sakamoto, S. (2014). Effects of curcumin supplementation on exercise-induced oxidative stress in humans. International Journal of Sports Medicine, 35(6), 469–475. https://doi.org/10.1055/s-0033-1357185
  • Tanabe, Y., Chino, K., Ohnishi, T., Ozawa, H., Sagayama, H., Maeda, S., & Takahashi, H. (2019). Effects of oral curcumin ingested before or after eccentric exercise on markers of muscle damage and inflammation. Scandinavian Journal of Medicine & Science in Sports, 29(4), 524–534. https://doi.org/10.1111/sms.13373
  • Tanabe, Y., Chino, K., Sagayama, H., Lee, H. J., Ozawa, H., Maeda, S., & Takahashi, H. (2019). Effective timing of curcumin ingestion to attenuate eccentric exercise-induced muscle soreness in men. Journal of Nutritional Science and Vitaminology, 65(1), 82–89. https://doi.org/10.3177/jnsv.65.82
  • Tanabe, Y., Maeda, S., Akazawa, N., Zempo-Miyaki, A., Choi, Y., Ra, S. G., Imaizumi, A., Otsuka, Y., & Nosaka, K. (2015). Attenuation of indirect markers of eccentric exercise-induced muscle damage by curcumin. European Journal of Applied Physiology, 115(9), 1949–1957. https://doi.org/10.1007/s00421-015-3170-4
  • Thaloor, D., Miller, K. J., Gephart, J., Mitchell, P. O., & Pavlath, G. K. (1999). Systemic administration of the NF-kappaB inhibitor curcumin stimulates muscle regeneration after traumatic injury. The American Journal of Physiology, 277(2), C320–329. https://doi.org/10.1152/ajpcell.1999.277.2.C320
  • Tidball, J. G., Dorshkind, K., & Wehling-Henricks, M. (2014). Shared signaling systems in myeloid cell-mediated muscle regeneration. Development, 141(6), 1184–1196. https://doi.org/10.1242/dev.098285
  • Trujillo, J., Chirino, Y. I., Molina-Jijon, E., Anderica-Romero, A. C., Tapia, E., & Pedraza-Chaverri, J. (2013). Renoprotective effect of the antioxidant curcumin: Recent findings. Redox Biology, 1(1), 448–456. https://doi.org/10.1016/j.redox.2013.09.003
  • Tsai, S.-W., Huang, C.-C., Hsu, Y.-J., Chen, C.-J., Lee, P.-Y., Huang, Y.-H., Lee, M.-C., Chiu, Y.-S., & Tung, Y.-T. (2020). Accelerated muscle recovery after in vivo curcumin supplementation. Accelerated Muscle Recovery After in vivo Curcumin Supplementation Natural Product Communications, 15(1), 1934578X20901898. https://doi.org/10.1177/1934578x20901898
  • Uderhardt, S., Martins, A. J., Tsang, J. S., Lammermann, T., & Germain, R. N. (2019). Resident macrophages cloak tissue microlesions to prevent neutrophil-driven inflammatory damage. Cell, 177(3), 541–555 e517. https://doi.org/10.1016/j.cell.2019.02.028
  • Vargas-Mendoza, N., Morales-Gonzalez, A., Madrigal-Santillan, E. O., Madrigal-Bujaidar, E., Alvarez-Gonzalez, I., Garcia-Melo, L. F., Anguiano-Robledo, L., Fregoso-Aguilar, T., & Morales-Gonzalez, J. A. (2019). Antioxidant and adaptative response mediated by Nrf2 during physical exercise. Antioxidants (Basel), 8(6), 196. https://doi.org/10.3390/antiox8060196
  • Wafi, A. M., Hong, J., Rudebush, T. L., Yu, L., Hackfort, B., Wang, H., Schultz, H. D., Zucker, I. H., & Gao, L. (2019). Curcumin improves exercise performance of mice with coronary artery ligation-induced HFrEF: Nrf2 and antioxidant mechanisms in skeletal muscle. Journal of Applied Physiology: Respiratory, Environmental and Exercise Physiology, 126(2), 477–486. https://doi.org/10.1152/japplphysiol.00654.2018
  • Wang, X., & Zhou, L. (2022). The many roles of macrophages in skeletal muscle injury and repair. Frontiers in Cell and Developmental Biology, 10, 952249. https://doi.org/10.3389/fcell.2022.952249
  • Yong-Hwan, K., Kyung-Ok, S., & Kyung-Soon, C. (2016). In vitro antioxidant properties of equisetum arvense and its effects on serum lipid levels in mice fed a high-fat diet. The Korean Journal of Food and Nutrition, 29(3), 347–356. https://doi.org/10.9799/ksfan.2016.29.3.347
  • Zia, A., Farkhondeh, T., Pourbagher-Shahri, A. M., & Samarghandian, S. (2021). The role of curcumin in aging and senescence: Molecular mechanisms. Biomedicine & Pharmacotherapy, 134, 111119. https://doi.org/10.1016/j.biopha.2020.111119