151
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Quantification of adulterated fox-derived components in meat products by drop digital polymerase chain reaction

, , , , , , & show all
Article: 2353871 | Received 08 Mar 2024, Accepted 06 May 2024, Published online: 07 Jun 2024

References

  • Abuzinadah, O. H., Yacoub, H. A., El, A. H., & Ramadan, H. A. (2015). Molecular detection of adulteration in chicken products based on mitochondrial 12S rRNA gene. Mitochondrial DNA, 26(3), 337–7. https://doi.org/10.3109/19401736.2013.840593
  • Amaral, J. S., Santos, C. G., Melo, V. S., Oliveira, M., & Mafra, I. (2014). Authentication of a traditional game meat sausage (alheira) by species-specific PCR assays to detect hare, rabbit, red deer, pork and cow meats. Food Research International, 60(June), 140–145. https://doi.org/10.1016/j.foodres.2013.11.003
  • Bian, R., Fan, Y., Liu, Y., Huo, S., Sheng, Q., Tan, Q., Zhang, Q., Zhang, H., & Bu, X. (2017). Research on a rapid detection method for donkey, horse, and fox derived components. Feed Processing and Detection Techniques, 53(1), 100–104.
  • Blaya, J., Lloret, E., Santísima-Trinidad, A. B., Ana, B., Ros, M., & Pascual, J. A. (2016). Molecular methods (digital PCR and real-time PCR) for the quantification of low copy DNA of Phytophthora nicotianae in environmental samples. Pest Management Science, 72(4), 747–753. https://doi.org/10.1002/ps.4048
  • Brunetto, G. S., Massoud, R., Ohayon, J., Fenton, K., Cortese, I., & Jacobson, S. (2014). Digital droplet PCR for precise quantification of human T-lymphotropic virus 1 proviral loads. Retrovirology, 11(1suppl). https://doi.org/10.1186/1742-4690-11-S1-P13
  • Cai, Y., He, Y., Lv, R., Chen, H., Wang, Q., Pan, L., & Te Pas, M. F. W. (2017). Detection and quantification of beef and pork materials in meat products by duplex droplet digital PCR. PLOS ONE, 12(8), e0181949. PMID: 28771608; PMCID: PMC5542382. https://doi.org/10.1371/journal.pone.0181949
  • Cai, Y., Li, X., Lv, R., Yang, J., Li, J., He, Y., & Pan, L. (2014). Quantitative analysis of pork and chicken products by droplet digital PCR. Biomed Research International, 2014, 1–6. https://doi.org/10.1155/2014/810209
  • Cavin, C., Cottenet, G., Cooper, K. M., & Zbinden, P. (2018). Meat vulnerabilities to economic food adulteration require new analytical solutions. Chimia (Aarau), 72(10), 697–703. https://doi.org/10.2533/chimia.2018.697
  • Chen, C., Chen, J., Zhang, Y., Li, Y., Wang, Z., Li, X., Zhou, W., & Zhang, Z. (2020). Quantitative detection of beef and beef meat products adulteration by the addition of duck meat using micro drop digital polymerase chain reaction. Journal of Food Quality, 2020(6), 1–8. https://doi.org/10.1155/2020/2843056
  • Cheng, X., He, W., Huang, F., Huang, M., & Zhou, G. (2014). Multiplex real-time PCR for the identification and quantification of DNA from duck, pig and chicken in Chinese blood curds. Food Research International, 60(June), 30–37. https://doi.org/10.1016/j.foodres.2014.01.047
  • Cheng, Y., Wu, H., Liu, Y., Shen, W., Ren, M., & Liu, X. (2020). Quantification of animal adulteration ingredients in duck blood production by droplet digital PCR method. Food Technology, 45(2), 363–366. https://doi.org/10.13684/j.cnki.spkj.2020.02.059
  • Chen, X., Ji, Y., Li, K., Wang, X., Peng, C., Xu, X., Pei, X., Xu, J., & Li, L. (2021). Development of a duck genomic reference material by digital PCR platforms for the detection of meat adulteration. Foods, 10(8), 1890. PMID: 34441667; PMCID: PMC8394454. https://doi.org/10.3390/foods10081890
  • Chen, J., Zhang, Y., Chen, C., Zhang, Y., Zhou, W., & Sang, Y. (2020). Identification and quantification of cassava starch adulteration in different food starches by droplet digital PCR. PLOS ONE, 15(2), e0228624. https://doi.org/10.1371/journal.pone.0228624
  • Falzone, L., Gattuso, G., Lombardo, C., Lupo, G., Grillo, C. M., Spandidos, D. A., Libra, M., & Salmeri, M. (2020). Droplet digital PCR for the detection and monitoring of legionella pneumophila. International Journal of Molecular Medicine, 46(5), 1777–1782. https://doi.org/10.3892/ijmm.2020.4724
  • Fan, Y. (2014). Wal mart event exposes the problem of retail purchasing. China Logistics and Procurement, 03, 42–43. https://doi.org/10.16079/j.cnki.issn1671-6663.03.009
  • Floren, C., Wiedemann, I. B., Brenig, E., & Beck, S. J. (2015). Species identification and quantification in meat and meat products using droplet digital PCR (ddPCR). Food Chemistry, 173, 1054–1058. https://doi.org/10.1016/j.foodchem.2014.10.138
  • Giaretta, N., Giuseppe, A., Lippert, M., Parente, A., & Maro, A. D. (2013). Myoglobin as marker in meat adulteration: A UPLC method for determining the presence of pork meat in raw beef burger. Food Chemistry, 141(3), 1814–1820. https://doi.org/10.1016/j.foodchem.2013.04.124
  • Hindson, C. M., Chevillet, J. R., Briggs, H. A., Gallichotte, E. N., Ruf, I. K., Hindson, B. J., Vessella, R. L., & Tewari, M. (2013). Absolute quantification by droplet digital PCR versus analog real-time PCR. Nature Methods, 10(10), 1003–1005. https://doi.org/10.1038/nmeth.2633
  • Hui, W., Chen, C., Miaomiao, X., Yan, Z., Boxu, C., Yongyan, L., Wenshen, J., Jia, C., & Wei, Z. (2022). Quantification of adulterated fox-derived components in meat products by drop digital polymerase chain reaction. Preprint at. https://doi.org/10.1101/2022.11.29.518335
  • Ismail, H. B., Reyhan, S. U., TüTüMay, T., & Halil, V. (2014). A rapid method for determination of the origin of meat and meat products based on the extracted fat spectra by using of Raman spectroscopy and chemometric method. European Food Research and Technology, 238(5), 845–852. https://doi.org/10.1007/s00217-014-2168-1
  • Iwobi, A., Sebah, D., Kraeme, I., Losher, C., Fischer, G., Busch, U., & Huber, I. (2015). A multiplex real-time PCR method for the quantification of beef and pork fractions in minced meat. Food Chemistry, 169(169), 305–313. https://doi.org/10.1016/j.foodchem.2014.07.139
  • Koppel, R., Jurg, R., & Jurg, R. (2011). Multiplex real-time PCR for the detection and quantification of DNA from beef, pork, horse and sheep. European Food Research and Technology, 232(6), 151–155. https://doi.org/10.1007/s00217-010-1371-y
  • Kppel, R., Daniels, M., & Felderer, N. (2013). Multiplex real-time PCR for the detection and quantification of DNA from duck, goose, chicken, turkey and pork. European Food Research & Technology, 236(6), 1093–1098. https://doi.org/10.1007/s00217-013-1973-2
  • Liu, L., Chen, F. C., Dorsey, J. L., & Hsieh, Y. P. (2006). Sensitive monoclonal antibody-based sandwich ELISA for the detection of porcine skeletal muscle in meat and feed products. Journal of Food Science, 71(1). https://doi.org/10.1111/j.1365-2621.2006.tb12393.x
  • Ma, H. (2014). Unveiling the mysterious mask of fox meat - interview with Ma Guangyu. Food Safety Guide, 8(2), 38–39.
  • Massanella, M., Singhania, A., Beliakova-Bethell, N., Pier, R., Lada, S. M., White, C. H., Pérez-Santiago, J., Blanco, J., Richman, D. D., Little, S. J., & Woelk, C. H. (2013). Differential gene expression in HIV-infected individuals following ART. Antiviral Research, 100(2), 420–428. https://doi.org/10.1016/j.antiviral.2013.07.017
  • O’Mahony, P. J. (2013). Finding horse meat in beef products—a global problem. QJM: An International Journal of Medicine, 106(6), 595–597. https://doi.org/10.1093/qjmed/hct087
  • Pinheiro, L. B., Coleman, V. A., Hindson, C. M., Herrmann, J., Hindson, B. J., Bhat, S., & Emslie, K. R. (2011). Evaluation of a droplet digital polymerase chain reaction format for DNA copy number quantification. Analytical Chemistry, 84(2), 1003–1011. https://doi.org/10.1021/ac202578x
  • Ren, J. (2017). Precise quantitative research on adulterated animal-derived components in mutton and its products by digital PCR technology. China Agricultural University.
  • Ren, J., Deng, T., Huang, W., Chen, Y., Ge, Y., & Doi, H. (2017). A digital PCR method for identifying and quantifying adulteration of meat species in raw and processed food. PLOS ONE, 12(3), e0173567. https://doi.org/10.1371/journal.pone.0173567
  • Safdar, M., Junejo, Y., Arman, K., & Abasıyanık, M. F. (2014). A highly sensitive and specific tetraplex pcr assay for soybean, poultry, horse and pork species identification in sausages: Development and validation - sciencedirect. Meat Science, 98(2), 296–300. https://doi.org/10.1016/j.meatsci.2014.06.006
  • Sanders, R., Huggett, J. F., Bushell, C. A., Cowen, S., Scott, D. J., & Foy, C. A. (2011). Evaluation of digital PCR for absolute DNA quantification. Analytical Chemistry, 83(17), 6474–6484. https://doi.org/10.1021/ac103230c
  • Song, L., Xue, C., Lu, Y., Zhao, L., Wang, D., Yang, H., Guo, M., & Yang, X. (2014). Detection and quantification pork in sheep products using real-time PCR. Food Science and Technology, 39(10), 319–322.
  • Tian, X., Wang, J., & Cui, S. (2013). Analysis of pork adulteration in minced mutton using electronic nose of metal oxide sensors. Journal of Food Engineering, 119(4), 744–749. https://doi.org/10.1016/j.jfoodeng.2013.07.004
  • Tibola, C. S., Da, S. S., Dossa, A. A., & Patricio, D. I. (2018). Economically motivated food fraud and adulteration in brazil: Incidents and alternatives to minimize occurrence. Food Science, 83(8), 2028–2038. https://doi.org/10.1111/1750-3841.14279
  • Zhang, Y., Liu, M., Wang, S., Kang, C., Zhang, M., & Li, Y. (2022). Identification and quantification of fox meat in meat products by liquid chromatography–tandem mass spectrometry. Food Chemistry, 372, 131336. https://doi.org/10.1016/j.foodchem.2021.131336
  • Zhao, X., Wang, Y., & Lan, Q. (2015). Identification of sheep derived components in meat products by fluorescent quantitative PCR. Science and Technology of Food Industry, 36(1), 299–302.
  • Zia, Q., Alawami, M., Mokhtar, N., Nhari, R., & Hanish, I. (2020). Current analytical methods for porcine identification in meat and meat products. Food Chemistry, 324, 126664. https://doi.org/10.1016/j.foodchem.2020.126664