89
Views
4
CrossRef citations to date
0
Altmetric
Research Articles

Partial sub-pixel and pixel-based alteration mapping of porphyry system using ASTER data: regional case study in western Yazd, Iran

, , &
Pages 300-326 | Received 15 Feb 2019, Accepted 23 Apr 2019, Published online: 05 May 2019

References

  • Abdelsalam, M.G., Stern, R.J., and Berhane, W.G., 2000. Mapping gossans in arid regions with Landsat TM and SIR-C/X-SAR imagery: the Beddaho alteration zone in northern Eritrea. Journal of African Earth Sciences, 30, 903–916. doi:10.1016/S0899-5362(00)00059-2
  • Abrams, J., et al., 1983. Remote sensing for porphyry copper deposits in southern Arizona. Economic Geology, 78 (4), 591–604. doi:10.2113/gsecongeo.78.4.591
  • Abrams, M.J. and Brown, D., 1984. Silver Bell, Arizona, porphyry copper test site report. The Joint NASA/Geosat Test Case Project, Final Report. The American Association of Petroleum Geologists, Tulsa, Okla, 4-1–4-73.
  • Agard, P., et al., 2005. Convergence history across Zagros (Iran): constraints from collisional and earlier deformation. International Journal of Earth Sciences, 94, 401–419. doi:10.1007/s00531-005-0481-4
  • Aghanabati, A., 2004. Geology of Iran. Tehran Geological Survey of Iran Press.
  • Aghazadeh, M., et al., 2011. Post-collisional polycyclic plutonism from the Zagros hinterland: The Shaivar Dagh plutonic complex, Alborz belt, Iran. Geological Magazine, 148, 980–1008. doi:10.1017/S0016756811000380
  • Ahmadian, J., et al., 2009. High magmatic flux during Alpine-Himalayan collision: constraints from the Kal-e-Kafi complex, Central Iran. Geological Society of America Bulletin, 857–868. doi:10.1130/B26279.1
  • Alavi, M., 1991. Tectonic map of the Middle East,1:5,000,000. Tehran: Geological Survey of Iran.
  • Alavi, M., 1994. Tectonics of the Zagros orogenic belt of Iran: new data and interpretations. Tectonophys, 229, 211–238. doi:10.1016/0040-1951(94)90030-2
  • Aliani, F., Dadfar, S., and Maanijou, M., 2015. Detection of alteration zones of Haji Abad iron deposit with (SWIR+VNIR) data of ASTER sensor. Geoscience, 24 (94), 73–80.
  • Arvin, M., et al., 2007. Petrochemistry of the Siah-Kuh granitoid stock southwest of Kerman, Iran: implications for initiation of Neotethys subduction. Journal of Asian Earth Sciences, 30, 474–489. doi:10.1016/j.jseaes.2007.01.001
  • Azizi, H. and Jahangiri, A., 2008. Cretaceous subduction-related volcanism in the northern Sanandaj-Sirjan Zone, Iran. Journal of Geodynamics, 45, 178–190. doi:10.1016/j.jog.2007.11.001
  • Baharifar, A., et al., 2004. The crystalline complexes of Hamadan (Sanandaj-Sirjan zone, western Iran): meta-sedimentary Mesozoic scquences affected by Late Cretaceous tectonic-metamorphic and plutonic events. Comptes Rendus Geoscience - Editorial Board, 336 (16), 1443–1452. doi:10.1016/j.crte.2004.09.014
  • Bedini, E., Van Der Meer, F., and Van Ruitenbeek, F., 2009. Use of HyMap imaging spectrometer data to map mineralogy in the Rodalquilar caldera, southeast Spain. International Journal of Remote Sensing, 30 (2), 327–348. doi:10.1080/01431160802282854
  • Berberian, F. and King, G.C.P., 1981. Towards a paleogeography and tectonic evolution of Iran. Can. International Journal of Earth Sciences, 18, 210–265.
  • Berberian, F., et al., 1982. Late cretaceous and early miocene andean type plutonic activity in northern Makran and central Iran. Journal of the Geological Society, 139, 605–614. doi:10.1144/gsjgs.139.5.0605
  • Boardman, J.W. and Kruse, F.A., 1994. Automated spectral analysis: A geological example using AVIRIS data, Northern Grapevine Mountains, Nevada. In: Proceeding Tenth Thematic Conference, 9–12 May. San Antonio, TX: Geological Remote Sensing, 407–418.
  • Boomeri, M., Nakashima, K., and Lentz, D.R., 2009. The Meiduk porphyry Cu deposit, Kerman, Iran: A geochemical analysis of the potassic zone including halogen element systematics related to Cu mineralization processes. Journal of Geochemical Exploration, 103 (1), 17–29. doi:10.1016/j.gexplo.2009.05.003
  • Carranza, E.J. and Hall, M., 2002. Mineral mapping with Landsat thematic mapper data for hydrothermal alteration mapping in heavily vegetated terrane. International Journal of Remote Sensing, 23 (22), 4827–4852. doi:10.1080/01431160110115014
  • Clark, R.N., Gallagher, A.J., and Swayze, G.A., 1990a. Material Absorption band depth mapping of imaging spectrometer data using a complete band shape least-squares fit with library spectra. In: Proceedings of the Second Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) Workshop. Pasadena, CA: JPL Publication, 90–54, 176–186.
  • Clark, R.N., et al., 1990b. High spectral resolution reflectance spectroscopy of minerals. Journal of Geophysical Research, 95, 12653–12680. doi:10.1029/JB095iB08p12653
  • Clark, R.N., et al., 2003. Imaging spectroscopy: Earth and planetary remote sensing with the USGS Tetracorder and expert systems. Journal of Geophysical Research, 108 (E12), 5131. doi:10.1029/2002JE001847
  • Crósta, A.P. and De Souza Filho, C.R., 2003. Targeting key alteration minerals in epithermal deposits in Patagonia, Argentina, using ASTER imagery and principal component analysis. International Journal of Remote Sensing, 24, 4233–4240. doi:10.1080/0143116031000152291
  • Crósta, A.P., Prado, I.D.M., and Obara, M., 1996. The use of Geoscan AMSS Mk-II, data for gold exploration in the Rio Itapicuru greenstone belt, Bahia, Brazil. In: Proceedings of the 11th Thematic Conference on Remote Sensing for Exploration Geology, Las Vegas. Neveda (Ann Arbor, MI): Environmental Research Institute of Michigan, 205–214.
  • Crowley, J.K., Brickey, D.W., and Rowan, L.C., 1989. Airborne imaging spectrometer data of the Ruby Mountains, Montana: mineral discrimination using relative absorption band depth images. Remote Sensing of Environment, 29, 121–134. doi:10.1016/0034-4257(89)90021-7
  • Crowley, J.K. and Vergo, N., 1988. Near-infrared reflectance spectra of mixtures of kaolin group minerals: use in clay mineral studies. Clay Minerals, 36, 310–316. doi:10.1346/CCMN.1988.0360404
  • Cudahy, T. and Hewson, R., 2002. ASTER geological case histories: porphyry-skarn-epithermal, iron oxide Cu-Au and Broken hill Pb-Zn-Ag. In: Annual general Meeting of the Geological Remote Sensing Group ‘ASTER Unveiled’. London: Burlington House.
  • Cudahy, T., et al., 2001. The performance of the satellite-borne Hyperion hyperspectral VNIR-SWIR imaging system for mineral mapping at Mount Fitton. In: Conference Paper in IEEE Transactions on Geoscience and Remote Sensing.
  • Cudahy, T., et al., 2008. Next generation mineral mapping: Queensland airborne HyMap and satellite ASTER surveys 2006–2008. CSIRO Exploration & Mining Report P2007/364.
  • Dargahi, S., et al., 2010. Petrogenesis of post-collisional A-type granitoids from the Urumieh-Dokhtar magmatic assemblage, southwestern Kerman, Iran: constraints on the Arabian-Eurasian continental collision. Lithos, 115, 190–204. doi:10.1016/j.lithos.2009.12.002
  • Dimitrijevic, M.D., 1973. Geology of Kerman region. Geological Survey of Iran, 334. report 52.
  • Ferrier, G. and Wadge, G., 1996. The application of imaging spectrometry data to mapping alteration zones associated with gold mineralization in southern Spain. International Journal of Remote Sensing, 17, 331–350. doi:10.1080/01431169608949009
  • Ferrier, G., et al., 2002. The mapping of hydrothermal alteration zones on the island of Lesvos, Greece using an integrated remote sensing dataset. International Journal of Remote Sensing, 23 (2), 341–356. doi:10.1080/01431160010003857
  • Foody, G.M. and Cox, D.P., 1994. Sub-pixel land cover composition estimation using a linear mixture model and fuzzy membership functions. International Journal of Remote Sensing, 15, 619–631. doi:10.1080/01431169408954100
  • Forster, H., 1978. Mesozoic-Cenozoic metallogenesis in Iran. Journal of the Geological Society, 135, 443–455. doi:10.1144/gsjgs.135.4.0443
  • Gabr, S., Ghulam, A., and Kusky, T., 2010. Detecting areas of high-potential gold mineralizationusing ASTER data. Ore Geology Reviews, 38, 59–69. doi:10.1016/j.oregeorev.2010.05.007
  • Ghasemi, A. and Talbot, C.J., 2006. A new tectonic scenario for the Sanandaj-Sirjan zone (Iran). Journal of Asian Earth Sciences, 26, 683–693. doi:10.1016/j.jseaes.2005.01.003
  • Goetz, A.F.H., Rock, B.N., and Rowan, L.C., 1983. Remote sensing for exploration, an overview. Economic Geology, 78, 573–590. doi:10.2113/gsecongeo.78.4.573
  • Guilbert, J.M. and Lowell, J.D., 1974. Variations in zoning patterns in porphyry ore deposits. Canadian Institutuion of Mining and Metallurgy Bulletin, 67 (742), 99–109.
  • Hajmolla Ali, A., 1993. Geological map of Kheza Abad 1:100,000. Tehran: Geological Survey of Iran.
  • Hassanpour, S., et al., 2010. Geology, alteration and mineralization of the Haftcheshmeh Cu-Mo porphyry deposit. Iranian. Journal of the Geological Society of India, 4 (15), 15–28.
  • Haykin, S., 1999. Neural networks: a comprehensive foundation. New York: Prentice Hall.
  • Hewson, R.D., et al., 2005. Seamless geologicalmap generation using ASTER in the Broken Hill–curnamona province of Australia. Remote Sensing of Environment, 99, 159–172. doi:10.1016/j.rse.2005.04.025
  • Hollister, V.F., 1978. Geology of the porphyry copper deposits of the western hemisphere. New York: American Institute of Mining and Metallurgical Engineers, 219.
  • Hooper, R.J., et al., 1994. The development of the southern Tethyan margin in Iran after the break-up of Gondwana-implications for the Zagros hydrocarbon province. Geoscience (Geological Survey of Iran), 4, 72–85.
  • Hosseinjani Zadeh, M., et al., 2014. Sub-pixel mineralmapping of a porphyry copper belt using EO-1 hyperion data. Advances in Space Research, 53, 440–451. doi:10.1016/j.asr.2013.11.029
  • Hunt, G.R., 1977. Spectral signatures of particulate minerals in the visible and near-infrared. Geophysics, 42, 501–513. doi:10.1190/1.1440721
  • Hunt, G.R. and Ashley, R.P., 1979. Spectra of altered rocks in the visible and near infrared. Economic Geology, 74, 1613–1629. doi:10.2113/gsecongeo.74.7.1613
  • Huntington, J.F., 1996. The role of remote sensing in finding hydrothermal mineral deposits on Earth. Evolution of Hydrothermal Ecosystems on Earth (and Mars?). England: Wiley, 214–234.
  • Iwasaki, A., et al., 2001. Enhancement of spectral separation performance for ASTER/SWIR. Proceedings of SPIE - the International Society for Optical Engineering, 4486, 42–50.
  • Jamali, H., et al., 2010. Metallogeny and tectonic evolution of the Cenozoic Ahar-Arasbaran volcanic belt, northern Iran. International Geology Review, 52, 608–630. doi:10.1080/00206810903416323
  • Jankovic, S., 1997. The Carpatho-Balkanides and adjacent area: a sector of the Tethyan Eurasian metallogenic belt. Mineralium Deposita, 32, 426–433. doi:10.1007/s001260050110
  • Jolliffe, I.T., 1986. Principal component analysis. Springer-Verlag, 338–343.
  • Jung, D., Kursten, M., and Tarkian, M., 1976. Post-mesozoic volcanism in Iran and its relation to the subduction of the Afro-Arabian under the Furasian plate. In: Afar between continental and oceanic rifting. Symp. Bad Bergzabem. 1974. Inter-Union Comm. Geodyn. Sci. Rep, 16, 175–181.
  • Keshava, N., 2003. A survey of spectral unmixing algorithms. Lincoln Laboratory Journal, 14, 60–65.
  • Kruse, F.A., et al., 2012. Mapping alteration minerals at prospect, outcrop and drill core scales using imaging spectrometry. International Journal of Remote Sensing, 33 (6), 1780–1798. doi:10.1080/01431161.2011.600350
  • Kruse, F.A., Boardman, J.W., and Huntington, J.F., 2003. Comparison of airborne hyperspectral data and EO-1 Hyperion for mineral mapping. IEEE Trans. IEEE Transactions on Geoscience and Remote Sensing, 41, 1388–1400. doi:10.1109/TGRS.2003.812908
  • Kruse, F.A. and Perry, S.L., 2007. Regional mineral mapping by extending hyperspectral signatures using multispectral data. In: Proceedings, IEEE Aero Space Conference, (peer-reviewed), 3–10 March, Big Sky, MT. On CD-ROM. 91.
  • Loughlin, W., 1991. Principal component analysis for alteration mapping. Photogramm. Photogrammetric Engineering and Remote Sensing, 57 (9), 1163–1169.
  • Lowell, J.D. and Guilbert, J.M., 1970. Lateral and vertical alteration–mineralization zoning in porphyry ore deposits. Economic Geology, 65, 373–408. doi:10.2113/gsecongeo.65.4.373
  • Maanijou, M., et al., 2015. Mapping of hydrothermal alteration of Dashkasan (Sari Gunay) epithermal gold mine using ASTER sensor image and XRD Analysis. Geoscience, 24 (95), 95–104.
  • Mars, J.C. and Rowan, L.C., 2006. Regional mapping of phyllic and argillic altered rocks in the Zagros magmatic arc, Iran, using Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data and logical operator algorithms. Geosphere, 2, 161–186. doi:10.1130/GES00044.1
  • Mars, J.C. and Rowan, L.C., 2010. Spectral assessment of new ASTER SWIR surface reflectance data products for spectroscopic mapping of rocks and minerals. Remote Sensing of Environment, 114, 2011–2025. doi:10.1016/j.rse.2010.04.008
  • Massironi, M., et al., 2008. Restricted access interpretation and processing of ASTER data for geological mapping and granitoids detection in the Saghro massif (eastern Anti-Atlas, Morocco). Geosphere, 4 (4), 736–759. doi:10.1130/GES00161.1
  • McInnes, B.I.A., et al. 2003. Timing of mineralization and exhumation processes at the Sarcheshmeh and Meiduk porphyry Cu deposits, Kerman belt, Iran. In: Eliopoulos, ed. Mineral exploration and sustainable development. 7th biennial SGA meeting, Athens. Rotterdam: Millpress, 1197–1200.
  • Mohajjel, M., Fergusson, C.L., and Sahandi, M.R., 2003. Cretaceous–tertiary convergence and continental collision, Sanandaj–sirjan zone, western Iran. Journal of Asian Earth Sciences, 21, 397–412. doi:10.1016/S1367-9120(02)00035-4
  • Moore, F., et al., 2008. Mapping mineralogical alteration using principal component analysis and matched filter processing in Takab area, north-west Iran, from ASTER data. International Journal of Remote Sensing, 29, 2851–2867. doi:10.1080/01431160701418989
  • Moshtagh, S., et al., 2017. Genesis and tectono-magmatic setting of Sadrabad iron Skarn (west of Yazd). Esfahan University. Petrology, 7, 55–72.
  • Nabavi, M.H., 1976. An introduction to the geology of Iran. Geological Survey of Iran, 109.
  • Ninomiya, Y., 2003a. A stabilized vegetation index and several mineralogic indices defined for ASTER VNIR and SWIR data. In: Proceedings of IEEE 2003 International Geoscience and Remote Sensing Symposium: IGARSS‘03, 3, 1552–1554.
  • Ninomiya, Y., 2003b. Rock type mapping with indices defined for multispectral thermal infrared aster data: case studies. Proceedings of SPIE - the International Society for Optical Engineering, 4886, 123–132.
  • Nogole-Sadat, M.A.A. and Almasian, M., 1993. Tectonic Map of Iran 1:100,0000. Tehran: Geological Survey of Iran.
  • Omrani, J., et al., 2008. Arcmagmatism and subduction history beneath the Zagros Mountains, Iran: a new report of adakites and geodynamic consequences. Lithos, 106, 380–398. doi:10.1016/j.lithos.2008.09.008
  • Pearson, K., 1901. On lines and planes of closest fit to systems of points in space. Philosophical Magazine Series, 6 (2), 559–572. doi:10.1080/14786440109462720
  • Perry, S.L., 2004. Spaceborne and airborne remote sensing systems for mineral exploration–case histories using infrared spectroscopy. In: P.L. King, M.S. Ramsey, and G.A. Swayze, eds. Infrared spectroscopy in geochemistry, exploration geochemistry, and remote sensing. London: Mineralogical Association of Canada, 227–240.
  • Pour, A.B. and Hashim, M., 2012. The application of ASTER remote sensing data to porphyry copper and epithermal gold deposits. Ore Geology Reviews, 44, 1–9. doi:10.1016/j.oregeorev.2011.09.009
  • Pour, B.A., Hashim, M., and Marghany, M., 2011. Using spectral mapping techniques on short wave infrared bands of ASTER remote sensing data for alteration mineral mapping in SE Iran. International Journal of Physical Sciences, 6 (4), 917–929.
  • Prado, I.D.M. and Crósta, A.P., 1997. Evaluating Geoscan AMSS Mk-II for gold exploration in the Fazenda Maria Preta District, Rio Itapicuru greenstone belt, Bahia State, Brazil. Boletim IG-USP, 28, 63–84. doi:10.11606/issn.2316-8986.v28i0p63-83
  • Richards, J.P., 2014. Tectonic, magmatic, and metallogenic evolution of the Tethyan orogen: from subduction to collision. Ore Geology Reviews, 70, 323–345. doi:10.1016/j.oregeorev.2014.11.009
  • Richards, J.P., et al., 2012. High Sr/Y magmas reflect arc maturity, high magmatic water content, and porphyry Cu ± Mo ± Au potential: examples from the Tethyan arcs of central and eastern Iran and western Pakistan. Economic Geology, 107, 295–332. doi:10.2113/econgeo.107.2.295
  • Ricotta, C., Avena, G.C., and de Palma, A., 1999. Mapping and monitoring net primary productivity with AVHRR NDVI time-series: statistical equivalence of cumulative vegetation indices. Photogrammetric Engineering and Remote Sensing, 54, 325–331. doi:10.1016/S0924-2716(99)00028-3
  • Rivard, B., 1989. Mapping ophiolitic melanges of the central eastern desert of Egypt using mixing model applied to Landsat thematic mapper data. In: Symposium volume of the seventh thematic conference on remote sensing for exploration geology, 2–6 October, Calgary, Canada. Research Institute of Michigan, 847–859.
  • Rowan, L.C., Goetz, A.F.H., and Ashley, R.P., 1977. Discrimination of hydrothermally altered and unaltered rocks in visible and near infrared multispectral images. Geophysics, 42, 522–535. doi:10.1190/1.1440723
  • Rowan, L.C. and Mars, J.C., 2003. Lithologic mapping in the Mountain Pass, California area using Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data. Remote Sensing of Environment, 84, 350–366. doi:10.1016/S0034-4257(02)00127-X
  • Rowan, L.C., Schmidt, R.G., and Mars, J.C., 2006. Distribution of hydrothermally altered rocks in the RekoDiq, Pakistan mineralized area based on spectral analysis of ASTER data. Remote Sensing of Environment, 104, 74–87. doi:10.1016/j.rse.2006.05.014
  • Sabins, F.F., 1997. Remote Sensing Principles and Interpretation. New York: W.H. Freeman Company, 494 p.
  • Sabins, F.F., 1999. Remote sensing for mineral exploration. Ore Geology Reviews, 14 (3), 157–183. doi:10.1016/S0169-1368(99)00007-4
  • Shafiei, B., Haschke, M., and Shahabpour, J., 2009. Recycling of orogenic arc crust triggers porphyry Cu mineralization in Kerman Cenozoic arc rocks, southeastern Iran. Mineralium Deposita, 44, 265–283. doi:10.1007/s00126-008-0216-0
  • Shafiei, B. and Shahabpour, J., 2008. Gold distribution in porphyry copper deposits of Kerman region, southeastern Iran. Journal of Sciences, Islamic Republic of Iran, 19 (3), 247–260.
  • Shahabpour, J., 2007. Island-arc affinity of the Central Iranian Volcanic Belt. Journal of Asian Earth Sciences, 30, 652–665. doi:10.1016/j.jseaes.2007.02.004
  • Shahbpour, J., 2005. Tectonic evolution of the orogenic belt in the region located between Kerman and Neyrize. Journal of Asian Earth Sciences, 24, 405–417. doi:10.1016/j.jseaes.2003.11.007
  • Sillitoe, R.H., 2010. Porphyry copper systems. Economic Geology, 105, 3–41. doi:10.2113/gsecongeo.105.1.3
  • Singh, A. and Harrison, A., 1985. Standardized principal components. International Journal of Remote Sensing, 6 (6), 883–896. doi:10.1080/01431168508948511
  • Smith, L.I., 2002, A tutorial on principal components analysis [Online]. Available from: http://www.sccg.sk/~haladova/principal_components.pdf
  • Spatz, D.M. and Wilson, R.T., 1995. Remote sensing characteristics of porphyry copper systems, western America Cordillera. In: F.W. Pierce and J.G. Bolm, eds. Arizona geological society digest. Vol. 20. Tuscon: Arizona Geological Society, 94–108.
  • Stöcklin, J., 1968. Structural history and tectonics of Iran: a review. American Association of Petroleum Geological Bulletin, 52, 1229–1258.
  • Taghavi, A. and Abolmaali, S., 2014. Recognition of vein type gold resource by integration and modeling, Yazd state-west Taft. In: 33rd National geosciences symposium, 22–23 February 2015, Tehran. Geological Survey of Iran (in Persian).
  • Taghavi, A., et al., 2016. Survey the role of linear density using Landsat imagery 8 on the formation of deposits in the West Taft-Yazd. In: 8th Symposium of Iranian society of economic geology, 19 April, Zanjan, Iran (in Persian).
  • Tangestani, M.H., et al., 2008. Evaluating advance spaceborne thermal emission and reflection radiometer (ASTER) data for alteration zone enhancement in a semi-arid area, northern Shahr-e-Babak, SE Iran. International Journal of Remote Sensing, 29, 2833–2850. doi:10.1080/01431160701422239
  • Tangestani, M.H. and Moore, F., 2002. Porphyry copper alteration mapping at the Meiduk area, Iran. Int. International Journal of Remote Sensing, 23 (22), 4815–4825. doi:10.1080/01431160110115564
  • Taylor, R., 2011. Gossans and Leached Cappings. Berlin: Springer, 34–39.
  • Tommaso, I.M. and Rubinstein, N., 2007. Hydrothermal alteration mapping using ASTER data in the Infiernillo porphyry deposit, Argentina. Ore Geology Reviews, 32, 275–290. doi:10.1016/j.oregeorev.2006.05.004
  • Van Der Meer, F., 1995. Spectral unmixing of Landsat Thematic Mapper data. International Journal of Remote Sensing, 16, 3189–3194. doi:10.1080/01431169508954622
  • Verdel, C., et al., 2011. A Paleogene extensional arc flare-up in Iran. Tectonics, 30, TC3008. doi:10.1029/2010TC002809
  • Waterman, G.C. and Hamilton, R.L., 1975. The Sarcheshmeh porphyry copper deposit. Economic Geology, 70, 568–576. doi:10.2113/gsecongeo.70.3.568
  • Woocock, C.E. and Gopal, S., 2000. Fuzzy set theory and thematic maps: accuracy assessment and area estimation. International Journal of Geographical Information Science, 14, 53–172.
  • Yamaguchi, Y. and Naito, C., 2003. Spectral indices for lithologic discrimination and mapping by using the ASTER SWIR bands. International Journal of Remote Sensing, 24 (22), 4311–4323. doi:10.1080/01431160110070320
  • Ye, J., et al., 2004. GPCA: an efficient dimension reduction scheme for image compression and retrieval [online]. In: Conference on knowledge discovery in data proceedings of the tenth ACM SIGKDD international conference on knowledge discovery and data mining, Seattle, WA. Available from: http://www.public.asu.edu/~jye02/Publications/Papers/gpca-kdd04 [Accessed 12 April 2012].
  • Yoon, W.J., Son, Y.S., and Kang, M.K., 2014. Pyrophyllite mapping in the Nohwa deposit, Korea, using ASTER remote sensing data. Geosciences Journal, 18 (3), 295–305. doi:10.1007/s12303-014-0007-9
  • Yujun, Z., Jianmin, Y., and Fojun, Y., 2007. The potentials of multi-spectral remote sensing techniques for mineral prognostication-taking Mongolian OyuTolgoi Cu–au deposit as an example. Frontiers in Earth Science, 14 (5), 63–70. doi:10.1016/S1872-5791(07)60036-0
  • Zahedi, A., Boomeri, M., and Mackizadeh, M.A., 2013. REE geochemistry in skarn garnets from Khut and Panah-Kuh Ore Deposit, West of Yazd. Iranian Petrology, 13, 47–66.
  • Zarasvandi, A., et al., 2012. Characteristics of Mineralizing Fluids of the Darreh-Zerreshk and Ali-Abad porphyry Copper Deposits, Central Iran, determined by fluid inclusion microthermometry. Journal of Geosciences, 63 (2), 188–209. doi:10.1111/rge.12004
  • Zarasvandi, A., et al., 2007. 40Ar/39Ar geochronology of alteration and petrogenesis of Porphyry Copper-related granitoids in the Darreh-Zerreshk and Ali-Abad area, Central Iran. Exploration and Mining Geology, 16 (1–2), 11–24. doi:10.2113/gsemg.16.1-2.11
  • Zhang, X., Panzer, M., and Duke, N., 2007. Lithologic and mineral information extraction for gold exploration using ASTER data in the south Chocolate Mountains (California). Journal of Photogrammetry and Remote Sensing, 62, 271–282. doi:10.1016/j.isprsjprs.2007.04.004

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.