365
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Unsupervised self-training method based on deep learning for soil moisture estimation using synergy of sentinel-1 and sentinel-2 images

ORCID Icon & ORCID Icon
Pages 1-14 | Received 29 Apr 2022, Accepted 20 Jul 2022, Published online: 31 Jul 2022

References

  • Abbes, A.B., Magagi, R., and Goita, K., 2019. Soil moisture estimation from smap observations using long short-term memory (lstm). In: IGARSS 2019-2019 IEEE International Geoscience and Remote Sensing Symposium, Miliano, Italy. 1590–1593. doi:10.1109/IGARSS.2019.8898418
  • Ali, I., et al. 2015. Review of machine learning approaches for biomass and soil moisture retrievals from remote sensing data. Remote Sensing, 7 (12), 16398–16421. doi:10.3390/rs71215841
  • Attarzadeh, R., et al. 2018. Synergetic use of sentinel-1 and sentinel-2 data for soil moisture mapping at plot scale. Remote Sensing, 10 (8), 1285. doi:10.3390/rs10081285
  • Chaudhary, S.K., et al. 2022. Machine learning algorithms for soil moisture estimation using sentinel-1: model development and implementation. Advances in Space Research, 69 (4), 1799–1812. doi:10.1016/j.asr.2021.08.022
  • Cheng, M., et al., 2022. Estimation of soil moisture content under high maize canopy coverage from uav multimodal data and machine learning. Agricultural Water Management, 264, 107530. doi:10.1016/j.agwat.2022.107530
  • Chung, J., et al. 2022. Soil moisture content estimation based on sentinel-1 sar imagery using an artificial neural network and hydrological components. Remote Sensing, 14 (3), 465. doi:10.3390/rs14030465
  • Entekhabi, D., et al. 2010. The soil moisture active passive (smap) mission. Proceedings of the IEEE, 98 (5), 704–716. doi:10.1109/JPROC.2010.2043918
  • Ge, L., Hang, R., and Liu, Q., 2019. Retrieving soil moisture over continental us via multi-view multi-task learning. IEEE Geoscience and Remote Sensing Letters, 16 (12), 1954–1958. doi:10.1109/LGRS.2019.2913100
  • Hachani, A., et al. 2019. Soil moisture retrieval from sentinel-1 acquisitions in an arid environment in Tunisia: application of artificial neural networks techniques. International Journal of Remote Sensing, 40 (24), 9159–9180. doi:10.1080/01431161.2019.1629503
  • Han, Y., et al. 2020. Retrieval of soil moisture by integrating sentinel-1a and modis data over agricultural fields. Water, 12 (6), 1726. doi:10.3390/w12061726
  • Hegazi, E.H., Yang, L., and Huang, J., 2021. A convolutional neural network algorithm for soil moisture prediction from sentinel-1 sar images. Remote Sensing, 13 (24), 4964. doi:10.3390/rs13244964
  • Jarray, N., Abbes, A.B., and Farah, I.R., 2021a. An evaluation of soil moisture retrieval using machine learning methods: application in arid regions of Tunisia. In: 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, Brussels, Belgium. 6331–6334. doi:10.1109/IGARSS47720.2021.9554585
  • Jarray, N., et al., 2021b. An open source platform to estimate soil moisture using machine learning methods based on eo-learn library. In: 2021 International Congress of AdvancedTechnology and Engineering (ICOTEN). 1–5. doi:10.1109/ICOTEN52080.2021.9493556
  • Jarray, N., Abbes, A.B., and Farah, I.R., 2022. A novel teacher-student framework for soil moisture retrieval by combining sentinel-1 and sentinel-2: application in arid regions. IEEE Geoscience and Remote Sensing Letters, 19, 1–5. doi:10.1109/LGRS.2022.3168982
  • Jia, Y., et al., 2021. Temporal-spatial soil moisture estimation from cygnss using machine learning regression with a preclassification approach. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 14, 4879–4893. doi:10.1109/JSTARS.2021.3076470
  • Kolassa, J., et al., 2018. Estimating surface soil moisture from smap observations using a neural network technique. Remote Sensing of Environment, 204, 43–59. doi:10.1016/j.rse.2017.10.045
  • Kumar, P., et al. 2019. Comprehensive evaluation of soil moisture retrieval models under different crop cover types using c-band synthetic aperture radar data. Geocarto International, 34 (9), 1022–1041. doi:10.1080/10106049.2018.1464601
  • Lin, Y., et al., 2020. Unsupervised person re-identification via cross-camera similarity exploration. IEEE Transactions on Image Processing, 29, 5481–5490. doi:10.1109/TIP.2020.2982826
  • Liu, Y., Qian, J., and Yue, H., 2020. Combined sentinel-1a with sentinel-2a to estimate soil moisture in farmland. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 14, 1292–1310. doi:10.1109/JSTARS.2020.3043628
  • Liu, J., et al. 2021. Soil moisture retrieval in farmland areas with sentinel multi-source data based on regression convolutional neural networks. Sensors, 21 (3), 877. doi:10.3390/s21030877
  • Nigam, K. and Ghani, R., 2000. Analyzing the effectiveness and applicability of co-training. Proceedings of the ninth international conference on Information and knowledge management, Virginia, USA, 86–93.
  • Rabiei, S., Jalilvand, E., and Tajrishy, M., 2021. A method to estimate surface soil moisture and map the irrigated cropland area using sentinel-1 and sentinel-2 data. Sustainability, 13 (20), 11355. doi:10.3390/su132011355
  • Scarpa, G., et al. 2018. A cnn-based fusion method for feature extraction from sentinel data. Remote Sensing, 10 (2), 236. doi:10.3390/rs10020236
  • Sriwongsitanon, N., et al., 2015. The normalized difference infrared index (ndii) as a proxy for soil moisture storage in hydrological modelling. Hydrology & Earth System Sciences Discussions, 12 (8): 8419–8457.
  • Tripathi, A. and Tiwari, R.K., 2020. Synergetic utilization of sentinel-1 sar and sentinel-2 optical remote sensing data for surface soil moisture estimation for rupnagar, Punjab, India. Geocarto International, 1–22.
  • Wang, Y., et al., 2021. Meta self-training for few-shot neural sequence labeling. SIGKDD Conference on Knowledge Discovery and Data Mining, Virtual Event Singapore, 1737–1747.
  • Yu, S., et al., 2020. Image clustering based on multi-scale deep maximize mutual information and self-training algorithm. IEEE Access, 8, 160285–160296. doi:10.1109/ACCESS.2020.3020844
  • Zhang, X., et al., 2019. Self-training with progressive augmentation for unsupervised cross domain person re-identification. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul Korea. 8222–8231. doi:10.1109/ICCV.2019.00831
  • Zhang, H., et al., 2021. Self-training with progressive representation enhancement for unsupervised cross-domain person re-identification. IEEE Transactions on Image Processing, 30, 5287–5298. doi:10.1109/TIP.2021.3082298
  • Zhao, F., et al., 2020. Unsupervised domain adaptation with noise resistible mutual-training for person re-identification. In: European Conference on Computer Vision, Glasgow, UK. 526–544.
  • Zou, L., et al., 2021. Geometry-aware self-training for unsupervised domain adaptation on object point clouds. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, Virtual. 6403–6412.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.