2,031
Views
9
CrossRef citations to date
0
Altmetric
Review

Reporter systems for in vivo tracking of lactic acid bacteria in animal model studies

, &
Pages 291-299 | Received 15 May 2015, Accepted 19 Aug 2015, Published online: 30 Oct 2015

References

  • FAO/WHO. Guidelines for the Evaluation of Probiotics in Food. Joint FAO/WHO Working Group Report on Drafting Guidelines for the Evaluation of Probiotics in Food. 2002; ftp://ftp.fao.org/es/esn/food/wgreport2.pdf
  • Dicks LMT, Botes M. Probiotic lactic acid bacteria in the gastro-intestinal tract: health benefits, safety and mode of action. Benef Microbes 2010; 1:11-29; PMID:21831747; http://dx.doi.org/10.3920/BM2009.0012
  • Botes M, van Reenen CA, Dicks LMT. Evaluation of Enterococcus mundtii ST4SA and Lactobacillus plantarum 423 as probiotics using a gastro-intestinal model with infant milk formulations as substrate. Int J Food Microbiol 2008; 128:362-70; PMID:18963159; http://dx.doi.org/10.1016/j.ijfoodmicro.2008.09.016
  • Sharma R, Bhaskar B, Sanodiya BS, Thakur GS, Jaiswal P, Yadav N, Sharma A, Bisen PS. Probiotic efficacy and potential of Streptococcus thermophiles modulating human health: A synoptic review. J Pharm Biol Sci 2014; 9:52–8
  • Kekkonen RA, Kajasto E, Miettinen M, Veckman V, Korpela R, Julkunen I. Probiotic Leuconostoc mesenteroides ssp. cremoris and Streptococcus thermophiles induce IL-12 and IFN-γ production. World J Gastroenterol 2008; 14(8):1192-203; PMID:18300344; http://dx.doi.org/10.3748/wjg.14.1192
  • Franz CMAP, Stiles ME, Schleifer K-H, Holzapfel WH. Enterococci in foods-a conundrum for food safety. Int J Food Microbiol 2003; 88:105-22; PMID:14596984; http://dx.doi.org/10.1016/S0168-1605(03)00174-0
  • Lewenstein A, Frigerio G, Moroni M. Biological properties of SF68, a new approach for the treatment of diarrhoeal diseases. Curr Therap Res 1979; 26:967-81
  • Agerbaek M, Gerdes LU, Richelsen B. Hypocholesterolemic effect of a new fermented milk product in healthy middle-aged men. Eur J Clin Nutr 1995; 49:346–52; PMID:7664720
  • Rossi EA, Vendramini RC, Carlos IZ, Pei YC, Valdez GF. Development of a novel fermented soymilk product with potential probiotic properties. Eur Food Res Technol 1999; 209:305–7; http://dx.doi.org/10.1007/s002170050499
  • Allen WD, Linggood MA, Porter P. Enterococcus organisms and their use as probiotics in alleviating irritable bowel syndrome symptoms. European Patent 1996; 0508701 (B1)
  • Gardiner GE, Ross RP, Wallace JM, Scanlan FP, Jägers PPJM, Fitzgerald GF, Collins JK, Stanton C. Influence of a probiotic adjunct culture of Enterococcus faecium on the quality of cheddar cheese. J Agric Food Chem 1999; 47:4907–16; PMID:10606551; http://dx.doi.org/10.1021/jf990277m
  • Ramiah K, van Reenen CA, Dicks LMT. Surface-bound proteins of Lactobacillus plantarum 423 that contribute to adhesion of Caco-2 cells and their role in competitive exclusion and displacement of Clostridium sporogenes and Enterococcus faecalis. Res Microbiol 2008; 159:470–5; PMID:18619532; http://dx.doi.org/10.1016/j.resmic.2008.06.002
  • Ramiah K, ten Doeschate K, Smith R, Dicks LMT. Safety Assessment of Enterococcus mundtii ST4SA and Lactobacillus plantarum 423 determined in trials with Wistar rats. Probiot Antimicrob Prot 2009; 1:15–23; http://dx.doi.org/10.1007/s12602-009-9010-2
  • Botes M, Loos B, van Reenen CA, Dicks LMT. Adhesion of the probiotic strains Enterococcus mundtii ST4SA and Lactobacillus plantarum 423 to Caco-2 cells under conditions simulating the intestinal tract, and in the presence of antibiotics and inflammatory medicaments. Arch Microbiol 2008; 190:573–84; PMID:18641972; http://dx.doi.org/10.1007/s00203-008-0408-0
  • Dicks LMT, ten Doeschate K. Enterococcus mundtii ST4SA and Lactobacillus plantarum 423 alleviated symptoms of Salmonella Infection, as determined in Wistar rats challenged with Salmonella enterica serovar Typhimurium. Curr Microbiol 2010; 61:184–9; PMID:20127245; http://dx.doi.org/10.1007/s00284-010-9594-5
  • Sambuy Y, De Angelis I, Ranaldi G, Scarino ML, Stammati A, Zucco F. The Caco-2 cell line as a model of the intestinal barrier: influence of cell and culture-related factors on Caco-2 cell functional characteristics. Cell Bio Toxicol 2005; 21:1–26; http://dx.doi.org/10.1007/s10565-005-0085-6
  • Lehmann S, Garayoa EG, Blanc A, Keist R, Schibli R, Rudin M. Recoding intracellular molecular events from the outside: Glycosylphosphadtidylinositol-anchored avidin as a reporter protein for in vivo imaging. J Nucl Med 2011; 52:445–52; PMID:21321260; http://dx.doi.org/10.2967/jnumed.110.082412
  • Lagendijk EL, Validov S, Lamers GEM, de Weert S, Bloemberg GV. Genetic tools for tagging Gram-negative bacteria with mCherry for visualization in vitro and in natural habitats, biofilm and pathogenicity studies. FEMS Microbiol Letts 2010; 305:81–90; http://dx.doi.org/10.1111/j.1574-6968.2010.01916.x
  • Mortin, LI, Li T, Van Praagh AD, Zhang S, Zhang X, Alder JD. Rapid bactericidal activity of Daptomycin against methicillin-resistant and methicillin-susceptible Staphylococcus aureus Peritinitis in mice as measured with bioluminescent bacteria. Antimicrob Agents Chemother 2007; 5(51):1787–94; http://dx.doi.org/10.1128/AAC.00738-06
  • Hardy J, Margolis JJ, Contag CH. Induced biliary excretion of Listeria monocytogenes. Infect Immun 2006; 74(2):1819–27; PMID:16495556; http://dx.doi.org/10.1128/IAI.74.3.1819-1827.2006
  • Foucault ML, Thomas L, Goussard S, Branchini BR, Grillot-Courvalin C. In vivo bioluminescence imaging for the study of intestinal colonization by Escherichia coli in mice. Appl Environ Microbiol 2010; 76:264–74; PMID:19880653; http://dx.doi.org/10.1128/AEM.01686-09
  • Rhee KJ, Cheng H, Harris A, Morin C, Kaper JB, Hecht G. Determination of spatial and temporal colonization of enteropathogenic E. coli and enterohemorrhagic E. coli in mice. Gut Microbes 2011; 2:34–41; PMID:21637016; http://dx.doi.org/10.4161/gmic.2.1.14882
  • Wiles S, Pickard KM, Peng K, MacDonald TT, Frankel G. In vivo bioluminescence imaging of the murine pathogen Citrobacter rodentium. Infect Immun 2006; 74:5391–6; PMID:16926434; http://dx.doi.org/10.1128/IAI.00848-06
  • Koo J, Kim Y, Kim J, Yeom M, Lee IC, Nam HG. A GUS/luciferase fusion reporter for plant gene trapping and for assay of promoter activity with luciferin-dependent control of the reporter protein stability. P Cell Phys 2007; 48(8):1121–31; http://dx.doi.org/10.1093/pcp/pcm081
  • Maire E, Lelievre E, Brau D, Lyons A, Woodward M, Fafeur V, Vandenbunder B. Development of an ultralow-light-level luminescence image analysis system for dynamic measurements of transcriptional activity in living and migrating cells. Anal Biochem 2000; 280:118–27; PMID:10805529; http://dx.doi.org/10.1006/abio.2000.4503
  • Contag CH, Bachmann MH. Advances in in vivo bioluminescence imaging of gene expression. Ann Rev Biomed Eng 2002; 4:235–7; http://dx.doi.org/10.1146/annurev.bioeng.4.111901.093336
  • Andrue N, Zelmer A, Wiles S. Noninvasive biophotonic imaging for studies of infectious disease. FEMS Microbiol Rev 2011; 35:360–94; PMID:20955395; http://dx.doi.org/10.1111/j.1574-6976.2010.00252.x
  • Daniel C, Poiret S, Dennin V, Boutillier D, Pot B. Bioluminescence imaging study of spatial and temporal persistence of Lactobacillus plantarum and Lactococcus lactis in living mice. Appl Environ Microbiol 2013; 79(4):1086–94; PMID:23204409; http://dx.doi.org/10.1128/AEM.03221-12
  • Francis KP, Joh D, Bellinger-Kawahara C, Hawkinson MJ, Purchio TF, Contag PR. Monitoring of bioluminescent Staphylococcus aureus infections in living mice using a novel luxABCDE construct. Infect Immun 2000; 68:3594–600; PMID:10816517; http://dx.doi.org/10.1128/IAI.68.6.3594-3600.2000
  • Francis KP, Yu J, Bellinger-Kawahara C, Joh D, Hawkinson MJ, Xiao G, Purchio TF, Caparon G, Lipsitch M, Contag PR. Visualizing pneumococcal infections in the lungs of live mice using bioluminescent Streptococcus pneumoniae transformed with a novel gram-positive lux transposon. Infect Immun 2001; 69:3350–8; PMID:11292758; http://dx.doi.org/10.1128/IAI.69.5.3350-3358.2001
  • Pinheiro LB, Gibbs MD, Vesey G, Smith JJ. Fluorescent reference strains of bacteria by chromosomal integration of a modified green fluorescent protein gene. Appl Microbiol Biotechnol 2008; 77(6):1287–95; PMID:17994234; http://dx.doi.org/10.1007/s00253-007-1253-9
  • Carroll P, Schreuder LJ, Muwanguzi-Karugaba J, Wiles S, Robertson BD, Ripoll J, Ward TH, Bancroft GJ, Schaible UE, Parish T. Sensitive detection of gene expression in Mycobacteria under replicating and non-replicating conditions using optimized far-red reporters. PLoS ONE 2010; 5(3):9823; http://dx.doi.org/10.1371/journal.pone.0009823
  • Dothager RS, Flentie K, Moss B, Pan M, Kesarwala A, Piwnica-Worms D. Advances in bioluminescence imaging of live animals. Curr Opin Biotechnol 2009; 20:45–53; PMID:19233638; http://dx.doi.org/10.1016/j.copbio.2009.01.007
  • Shaner NC, Campbell RE, Steinbach PA, Giepmans BN, Palmer AE, Tsien RY. Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nat Biotechnol 2004; 22(12): 1567–72; PMID:15558047; http://dx.doi.org/10.1038/nbt1037
  • Garcia-Cayuela T, Gomez de Carinanos LP. Fluorescent protein vectors for promoter analysis in lactic acid bacteria and Escherichia coli. Appl Microbiol Biotechnol 2012; 96:171–81; PMID:22534822; http://dx.doi.org/10.1007/s00253-012-4087-z
  • Frommer WB, Davidson MW, Campbell RE. Genetically encoded biosensors based on engineered fluorescent proteins. Chem Soc Rev 2009; 38:2833–41; PMID:19771330; http://dx.doi.org/10.1039/b907749a
  • Chudakov DM, Lukyanov S, Lukyanov KA. Fluorescent protein as a toolkit for in vivo imaging. Trends Biotechnol 2005; 26:605–13; http://dx.doi.org/10.1016/j.tibtech.2005.10.005
  • Wiedenmann J, Oswald F, Nienhaus GU. Fluorescent proteins for live cell imaging: opportunities, limitations and challenges. Life 2009; 61(11): 1029–42; PMID:19859977
  • Shimomura O, Johnson FH, Saiga Y. Extraction, purification and properties of aequorin, a bioluminescent protein from the luminous hydromedusan, Aequorea. J Cell Compar Phys 1962; 59:223–39; http://dx.doi.org/10.1002/jcp.1030590302
  • Prasher DC, Eckenrode VK, Ward WW, Prendergast FG, Cormier MJ. Primary structure of the Aequorea victoria green-fluorescent protein. Gene 1992; 111(2):229–33; PMID:1347277; http://dx.doi.org/10.1016/0378-1119(92)90691-H
  • Ropp JD, Donahue CJ, Wolfgang-Kimball D, Hooley JJ, Chin JYW, Hoffman RA, Cuthbertson RA, Bauer KD. Aequorea green fluorescent protein analysis by flow cytometry. Cytometry 1995; 21:309–17; PMID:8608728; http://dx.doi.org/10.1002/cyto.990210402
  • Yu Q, Dong S, Zhu W, Yang Q. Use of green fluorescent protein to monitor Lactobacillus in the gastro-intestinal tract of chicken. FEMS Microbiol Letts 2007; 275:207–13; http://dx.doi.org/10.1111/j.1574-6968.2007.00877.x
  • Scott KP, Mercer DK, Richardson AJ, Melville CM, Glover LA, Flint HJ. Chromosomal integration of the green fluorescent protein gene in lactic acid bacteria and the survival of the marked strains in human gut simulations. FEMS Microbiol Letts 2000; 182:23–7; http://dx.doi.org/10.1111/j.1574-6968.2000.tb08867.x
  • Runft DL, Mitchell KC, Abuaita BH, Allen JP, Bajer S, Ginsburg K, Neely MN, Withey JH. Zebrafish as a natural host model for Vibrio cholera colonization and transmission. Appl Environ Microbiol 2014; 80:1710–17; PMID:24375135; http://dx.doi.org/10.1128/AEM.03580-13
  • Rieu A, Aoudia N, Jego G, Chluba J, Yousfi N, Briandet R, Deschamps J, Gasquet B, Monedero V, Garrido C, Guzzo J. The biofilm mode of life boosts the anti-inflammatory properties of Lactobacillus. Cell Microbiol 2014; 16:1836–53; PMID:25052472; http://dx.doi.org/10.1111/cmi.12331
  • Chalfie M, Tu Y, Euskirchen G, Ward WW, Prasher DC. Green fluorescent protein as a marker for gene expression. Science 1994; 263(5148): 802–5; PMID:8303295; http://dx.doi.org/10.1126/science.8303295
  • Bevis BJ, Glick BS. Rapidly maturing variants of the Discosoma red fluorescent protein (DsRed). Nat Biotechnol 2002; 20:83–7; PMID:11753367; http://dx.doi.org/10.1038/nbt0102-83
  • Chapagain PP, Regmi CK, Castillo W. Fluorescent protein barrel fluctuations and oxygen diffusion pathways in mCherry. J Chem Phys 2011; 135(23):235101; PMID:22191901; http://dx.doi.org/10.1063/1.3660197
  • Doherty GP, Bailey K, Lewis PJ. Stage-specific fluorescence intensity of GFP and mCherry during sporulation in Bacillus subtilis. BMC Res Notes 2010; 3:303–10; PMID:21073756
  • Viegas MS, Martins TC, Seco F, do Carmo A. An improved and cost-effective methodology for the reduction of autofluorescence in direct immunofluorescence studies on formalin-fixed paraffin-embedded tissues. Eur J Histochem 2007; 51(1):59–66; PMID:17548270
  • Leroch M, Mernke D, Koppenhoefer D, Schneider P, Mosbach A, Doehlemann G, Hahn M. Living colors in the gray mold pathogen Botrytis cinerea: Codon-optimized genes encoding green fluorescent protein and mcherry, which exhibit bright fluorescence. Appl Environ Microbiol 2011; 77(9):2887–97; PMID:21378036; http://dx.doi.org/10.1128/AEM.02644-10
  • Van Zyl WF. Fluorescence and bioluminescence imaging of the intestinal colonization of Enterococcus mundtii ST4SA and Lactobacillus plantarum 423 in mice infected with Listeria monocytogenes EGde. MSc thesis, University of Stellenbosch, Stellenbosch, South Africa 2015.
  • Leevy WM, Gammon ST, Jiang H. Optical imaging of bacterial infection in living mice using a fluorescent near infrared molecular probe. J Am Chem Soc 2006; 128:16476–7; PMID:17177377; http://dx.doi.org/10.1021/ja0665592
  • Contag CH, Contag PR, Mullins JI, Spilman SD, Stevenson DK, Benaron DA. Photonic detection of bacterial pathogens in living hosts. Mol Microbiol 1995; 18:593–603; PMID:8817482; http://dx.doi.org/10.1111/j.1365-2958.1995.mmi_18040593.x
  • Taroni P, Pifferi A, Torricelli A, Comelli D, Cubeddu R. In vivo absorption and scattering spectroscopy of biological tissues. Photochem Photobiol Sci 2003; 2:124–9; PMID:12664972; http://dx.doi.org/10.1039/b209651j
  • Rice BW, Cable MD, Nelson MB. In vivo imaging of light-emitting probes. J Biomed Opt 2001; 6:432–40; PMID:11728202; http://dx.doi.org/10.1117/1.1413210
  • Troy T, Jekic-McMullen D, Sambucetti L, Rice B. Qauntitative comparison of the sensitivity of detection of fluorescent and bioluminescent reporters in animal models. Mol Imaging 2004; 3:9–23; PMID:15142408; http://dx.doi.org/10.1162/153535004773861688
  • Kredel S, Oswald F, Nienhaus K, Deuschle K, Roecker C, Wolff M, Heilker R, Nienhaus GU, Wiedenmann J. mRuby, a bright monomeric ref fluorescent protein for labelling of subcellular structures. Plos ONE 2009; 4:e4391; PMID:19194514; http://dx.doi.org/10.1371/journal.pone.0004391
  • Gross LA, Baird GS, Hoffman RC, Baldridge KK, Tsien RY. The structure of the chromophore within DsRed, a red fluorescent protein from coral. Proc Natl Acad Sci USA 2000; 97:11990–5; PMID:11050230; http://dx.doi.org/10.1073/pnas.97.22.11990
  • Morys M, Berger D. Accurate measurements of biologically effective ultraviolet radiation. Proc SPIE 1993; 2049:152–61; http://dx.doi.org/10.1117/12.163506
  • Setlow RB, Grist E, Thompson K, Woodhead AD. Wavelengths effective in induction of malignant melanoma. Proc Natl Acad Sci 1993; 90:6666–70; PMID:8341684; http://dx.doi.org/10.1073/pnas.90.14.6666
  • Tsutsui H, Karasawa S, Shimizu H, Nukina N, Miyawaki A. Semi-rational engineering of a coral fluorescent protein into an efficient highlighter. EMBO Rep 2005; 6:233–238; PMID:15731765; http://dx.doi.org/10.1038/sj.embor.7400361
  • Wilson T, Hastings JW. Bioluminescence. Ann Rev Cell Dev Biol 1998; 14:197–230; http://dx.doi.org/10.1146/annurev.cellbio.14.1.197
  • Lin LY, Meighen EA. Bacterial bioluminescence. Opin Struct Biol 2009; 5:798–809
  • Hastings JW. Chemistries and colors of bioluminescent reactions: a review. Gene 1996; 173:5–11; PMID:8707056; http://dx.doi.org/10.1016/0378-1119(95)00676-1
  • Szittner R, Meighen E. Nucleotide sequence, expression, and properties of luciferase coded by lux genes from a terrestrial bacterium. J Biol Chem 1990; 265:16581–7; PMID:2204626
  • Brand AM, Smith R, de Kwaadsteniet M, Dicks LMT. Development of a murine model with optimal routes for bacterial infection and treatment, as determined with bioluminescent imaging in C57BL/6 Mice. Prob Antimicrob Prot 2011; 3:125–31; http://dx.doi.org/10.1007/s12602-011-9069-4
  • De Wet JR, Wood KV, DeLuca M, Helsinki DR, Subramani S. Firefly luciferase gene: structure and expression in mammalian cells. Mol Cell Biol 1987; 7:725–37; PMID:3821727
  • McElroy WD, DeLuca MA. Firefly and bacterial luminescence: basic science and applications. J Appl Biochem 1983; 5:197–209; PMID:6680120
  • Ando Y, Niwa K, Yamada N. Firefly bioluminescence quantum yield and colour change by pH-sensitive green emission. Nat Photonics 2007; 2:44–7; http://dx.doi.org/10.1038/nphoton.2007.251
  • Bloquel C, Trollet C, Pradines E, Seguin J, Scherman D, Bureau MF. Optical imaging of luminescence for in vivo quantification of gene electrotransfer in mouse muscle and knee. BMC Biotechnol 2006; 6:16; PMID:16524461; http://dx.doi.org/10.1186/1472-6750-6-16
  • Doyle TC, Nawotka KA, Kawahara CB, Francis KP, Contag PR. Visualizing fungal infections in living mice using bioluminescent pathogenic Candida albicans strains transformed with the firefly luciferase gene. Microb Pathogenesis 2006; 40:82–90; http://dx.doi.org/10.1016/j.micpath.2005.11.003
  • Lang T, Goyard S, Lebastard M, Milon G. Bioluminescent Leishmania expressing luciferase for rapid and high throughput screening of drugs acting on amastigote harbouring macrophages and for quantitative real-time monitoring of parasitism features in living mice. Cell Microbiol 2005; 7:383–92; PMID:15679841; http://dx.doi.org/10.1111/j.1462-5822.2004.00468.x
  • Heravi RM, Nasiraii LR, Sankian M, Kermanshahi H, Varasteh AR. Optimization and comparison of two electrotransformation methods for lactobacilli. Biotechnol 2012; 11(1):50–54; http://dx.doi.org/10.3923/biotech.2012.50.54
  • Beasley SS, Takala TM, Reunanean J, Apajalahti J, Saris PE. Characterization and electrotransformation of Lactobacillus crispatus isolated from chicken crop and intestine. Poult Sci 2004; 83:45–8; PMID:14761083; http://dx.doi.org/10.1093/ps/83.1.45
  • Douglas GL, Klaenhammer TR. Directed chromosomal integration and expression of the reporter gene gusA3 in Lactobacillus acidophilus NCFM. Appl Environ Microbiol 2011; 77(20): 7365–71; PMID:21873486; http://dx.doi.org/10.1128/AEM.06028-11
  • Heap JT, Ehsaan M, Cooksley CM, Ng Y, Cartman ST, Winzer K, Minton NP. Integration of DNA into bacterial chromosomes from plasmids without a counter selection marker. Nucl Acids Res 2012; 40(8) e59; PMID:22259038; http://dx.doi.org/10.1093/nar/gkr1321
  • Rossi F, Capoaglio A, Dellaglio F. Genetic modification of Lactobacillus plantarum by heterologous gene integration in a not functional region of the chromosome. Appl Environ Microbiol 2008; 80:79–86
  • Gosalbes MJ, Esteban CD, Galan JL, Perez-Martinez G. Integrative food-grade expression system based on the lactose regulon of Lactobacillus casei. Appl Environ Microbiol 2000; 66:4822–8; PMID:11055930; http://dx.doi.org/10.1128/AEM.66.11.4822-4828.2000
  • Hols P, Ferain T, Garmyn D, Bernard N, Delcour J. Use of homologous expression-secretion signals and vector-free stable chromosomal integration in engineering of Lactobacillus plantarum for alpha-amylase and levanase expression. Appl Environ Microbiol 1994; 60(5):1401–3; PMID:8017927
  • O’Sullivan DJ, Klaenhammer TR. High- and low- copy number Lactococcus shuttle cloning vectors with features for clone screening. Gene 1993; 137:227–31; PMID:Can't; http://dx.doi.org/10.1016/0378-1119(93)90011-Q
  • Geoffroy M, Guyard C, Quatannens B, Pavan S, Lange M, Mercenier A. Use of green fluorescent protein to tag lactic acid bacterium strains under development as live vaccine vectors. Appl Environ Microbiol 2000; 66(1):383–91; PMID:10618252; http://dx.doi.org/10.1128/AEM.66.1.383-391.2000
  • Martin MC, Alonso JC, Suarez JE, Alvarez MA. Genetic food-grade recombinant lactic acid bacterium strains by site-specific recombination. Appl Environ Microbiol 2000; 66(6): 2555–604; PMID:10831438; http://dx.doi.org/10.1128/AEM.66.6.2555-2564.2000
  • Gupta S, Joshi L. Codon optimization. Computational Bioscience. Arizona State University. 2003
  • Crawford MA, Zhu Y, Green CS. Antimicrobial effects of interferon-inducible CXC chemokines against Bacillus anthracis spores and bacilli. Infect Immun 2009; 77:1664–78; PMID:19179419; http://dx.doi.org/10.1128/IAI.01208-08
  • Radhakrishnan GK, Yu Q, Harms JS, Splitter GA. Brucella TIR domain-containing protein mimics properties of the Toll-like receptor adaptor protein TIRAP. J Biol Chem 2009; 284:9892–8; PMID:19196716; http://dx.doi.org/10.1074/jbc.M805458200
  • Cronin M, Sleator RD, Hill C, Fitzgerald GF, van Sinderin D. Development of luciferase-based reporter system to monitor Bifidobacterium breve UCC2003 persistence in mice. BMC Microbiol. 2008; 8:161; PMID:18816375; http://dx.doi.org/10.1186/1471-2180-8-161
  • Andreu N, Zelmer A, Fletcher T. Optimisation of bioluminescent reporters for use with mycobacteria. PLoS One 2010; 5:e10777; PMID:20520722; http://dx.doi.org/10.1371/journal.pone.0010777
  • Burkatovskaya M, Tegos GP, Swietlik E, Demidova TN, Castano AP, Hamblin MR. Use of chitosan bandage to prevent fatal infections developing from highly contaminated wounds in mice. Biomat 2006. 27: 4157–64; http://dx.doi.org/10.1016/j.biomaterials.2006.03.028
  • Sedgley C, Applegate B, Nagel A, Hall D. Real-time imaging and quantification of bioluminescent bacteria in root canals in vitro. J Endodont 2004; 30:893–8; http://dx.doi.org/10.1097/01.DON.0000132299.02265.6C

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.