4,966
Views
94
CrossRef citations to date
0
Altmetric
Review

Linking dietary patterns with gut microbial composition and function

, , &
Pages 113-129 | Received 02 Aug 2016, Accepted 05 Dec 2016, Published online: 06 Jan 2017

References

  • Jandhyala SM, Talukdar R, Subramanyam C, Vuyyuru H, Sasikala M, Reddy DN. Role of the normal gut microbiota. World J Gastroenterol 2015; 21:8787-803; PMID:26269668; http://dx.doi.org/10.3748/wjg.v21.i29.8787
  • Consortium THMP. Structure, function and diversity of the healthy human microbiome. Nature 2012; 486:207-14; PMID:22699609; http://dx.doi.org/10.1038/nature11234
  • Marchesi JR, Adams DH, Fava F, Hermes GDA, Hirschfield GM, Hold G, Quraishi MN, Kinross J, Smidt H, Tuohy KM, et al. The gut microbiota and host health: A new clinical frontier. Gut 2016; 65:330-9; PMID:26338727; http://dx.doi.org/10.1136/gutjnl-2015-309990
  • Richards JL, Yap YA, McLeod KH, Mackay CR, Marino E. Dietary metabolites and the gut microbiota: An alternative approach to control inflammatory and autoimmune diseases. Clin Trans Immunology 2016; 5:e82; http://dx.doi.org/10.1038/cti.2016.29
  • Voreades N, Kozil A, Weir T. Diet and the development of the human intestinal microbiome. Front Microbiol 2014; 5:494; PMID:25295033; http://dx.doi.org/10.3389/fmicb.2014.00494
  • David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE, Ling AV, Devlin AS, Varma Y, Fischbach MA, et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature 2014; 505:559-63; PMID:24336217; http://dx.doi.org/10.1038/nature12820
  • Wu GD, Chen J, Hoffmann C, Bittinger K, Chen Y-Y, Keilbaugh SA, Bewtra M, Knights D, Walters WA, Knight R, et al. Linking long-term dietary patterns with gut microbial enterotypes. Science 2011; 334:105-8; PMID:21885731; http://dx.doi.org/10.1126/science.1208344
  • Alexander H, Lockwood LP, Harris MA, Melby CL. Risk factors for cardiovascular disease and diabetes in two groups of Hispanic Americans with differing dietary habits. J Am Coll Nutr 1999; 18:127-36; PMID:10204828; http://dx.doi.org/10.1080/07315724.1999.10718840
  • Melby CL, Goldflies DG, Hyner GC, Lyle RM. Relation between vegetarian/nonvegetarian diets and blood pressure in black and white adults. Am J Public Health 1989; 79:1283-8; PMID:2764208; http://dx.doi.org/10.2105/AJPH.79.9.1283
  • Melby CL, Goldflies DG, Toohey ML. Blood pressure differences in older black and white long-term vegetarians and nonvegetarians. J Am Coll Nutr 1993; 12:262-9; PMID:8409080; http://dx.doi.org/10.1080/07315724.1993.10718308
  • Melby CL, Toohey ML, Cebrick J. Blood pressure and blood lipids among vegetarian, semivegetarian, and nonvegetarian African Americans. Am J Clin Nutr 1994; 59:103-9; PMID:8279389
  • Toohey ML, Harris MA, DeWitt W, Foster G, Schmidt WD, Melby CL. Cardiovascular disease risk factors are lower in African-American vegans compared to lacto-ovo-vegetarians. J Am Coll Nutr 1998; 17:425-34; PMID:9791838; http://dx.doi.org/10.1080/07315724.1998.10718789
  • Orlich MJ, Singh PN, Sabate J, Jaceldo-Siegl K, Fan J, Knutsen S, Beeson WL, Fraser GE. Vegetarian dietary patterns and mortality in adventist health study 2. JAMA Intern Med 2013; 173:1230-8; PMID:23836264; http://dx.doi.org/10.1001/jamainternmed.2013.6473
  • Tonstad S, Stewart K, Oda K, Batech M, Herring RP, Fraser GE. Vegetarian diets and incidence of diabetes in the adventist health study-2. Nutr Metab Cardiovasc Dis 2013; 23:292-9; http://dx.doi.org/10.1016/j.numecd.2011.07.004
  • Bloomer RJ, Kabir MM, Canale RE, Trepanowski JF, Marshall KE, Farney TM, Hammond KG. Effect of a 21 day Daniel Fast on metabolic and cardiovascular disease risk factors in men and women. Lipids Health Dis 2010; 9:94; PMID:20815907; http://dx.doi.org/10.1186/1476-511X-9-94
  • Ley RE, Hamady M, Lozupone C, Turnbaugh P, Ramey RR, Bircher JS, Schlegel ML, Tucker TA, Schrenzel MD, Knight R, et al. Evolution of mammals and their gut microbes. Science 2008; 320:1647-51; PMID:18497261; http://dx.doi.org/10.1126/science.1155725
  • De Filippo C, Cavalieri D, Di Paola M, Ramazzotti M, Poullet JB, Massart S, Collini S, Pieraccini G, Lionetti P. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc Natl Acad Sci U S A 2010; 107:14691-6; PMID:20679230; http://dx.doi.org/10.1073/pnas.1005963107
  • Ou J, Carbonero F, Zoetendal EG, DeLany JP, Wang M, Newton K, Gaskins HR, O'Keefe SJ. Diet, microbiota, and microbial metabolites in colon cancer risk in rural Africans and African Americans. Am J Clin Nutr 2013; 98:111-20; PMID:23719549; http://dx.doi.org/10.3945/ajcn.112.056689
  • Yatsunenko T, Rey FE, Manary MJ, Trehan I, Dominguez-Bello MG, Contreras M, Magris M, Hidalgo G, Baldassano RN, Anokhin AP, et al. Human gut microbiome viewed across age and geography. Nature 2012; 486:222-7; PMID:22699611
  • Zimmer J, Lange B, Frick JS, Sauer H, Zimmermann K, Schwiertz A, Rusch K, Klosterhalfen S, Enck P. A vegan or vegetarian diet substantially alters the human colonic faecal microbiota. Eur J Clin Nutr 2012; 66:53-60; PMID:21811294; http://dx.doi.org/10.1038/ejcn.2011.141
  • Wu GD, Compher C, Chen EZ, Smith SA, Shah RD, Bittinger K, Chehoud C, Albenberg LG, Nessel L, Gilroy E, et al. Comparative metabolomics in vegans and omnivores reveal constraints on diet-dependent gut microbiota metabolite production. Gut 2016; 65:63-72; PMID:25431456; http://dx.doi.org/10.1136/gutjnl-2014-308209
  • Wilson A, McLean C, Kim RB. Trimethylamine-N-oxide: A link between the gut microbiome, bile acid metabolism, and atherosclerosis. Curr Opin Lipidol 2016; 27:148-54; PMID:26959704; http://dx.doi.org/10.1097/MOL.0000000000000274
  • Koeth RA, Wang Z, Levison BS, Buffa JA, Org E, Sheehy BT, Britt EB, Fu X, Wu Y, Li L, et al. Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat Med 2013; 19:576-85; PMID:23563705; http://dx.doi.org/10.1038/nm.3145
  • Caesar R, Tremaroli V, Kovatcheva-Datchary P, Cani Patrice D, Bäckhed F. Crosstalk between gut microbiota and dietary lipids aggravates WAT inflammation through TLR signaling. Cell Metab 2015; 22:658-68; PMID:26321659; http://dx.doi.org/10.1016/j.cmet.2015.07.026
  • Semova I, Carten Juliana D, Stombaugh J, Mackey Lantz C, Knight R, Farber Steven A, Rawls JF. Microbiota regulate intestinal absorption and metabolism of fatty acids in the zebrafish. Cell Host Microbe; 12:277-88; PMID:22980325; http://dx.doi.org/10.1016/j.chom.2012.08.003
  • Ridlon JM, Kang DJ, Hylemon PB. Bile salt biotransformations by human intestinal bacteria. J Lipid Res 2006; 47:241-59; PMID:16299351; http://dx.doi.org/10.1194/jlr.R500013-JLR200
  • Qi Y, Jiang C, Cheng J, Krausz KW, Li T, Ferrell JM, Gonzalez FJ, Chiang JY. Bile acid signaling in lipid metabolism: Metabolomic and lipidomic analysis of lipid and bile acid markers linked to anti-obesity and anti-diabetes in mice. Biochim Biophys Acta 2015; 1851:19-29; PMID:24796972; http://dx.doi.org/10.1016/j.bbalip.2014.04.008
  • Russell WR, Gratz SW, Duncan SH, Holtrop G, Ince J, Scobbie L, Duncan G, Johnstone AM, Lobley GE, Wallace RJ, et al. High-protein, reduced-carbohydrate weight-loss diets promote metabolite profiles likely to be detrimental to colonic health. Am J Clin Nutr 2011; 93:1062-72; PMID:21389180; http://dx.doi.org/10.3945/ajcn.110.002188
  • Sheflin AM, Whitney AK, Weir TL. Cancer-promoting effects of microbial dysbiosis. Curr Oncol Rep 2014; 16(10):406; PMID:25123079; http://dx.doi.org/10.1007/s11912-014-0406-0
  • Clarke SF, Murphy EF, O'Sullivan O, Lucey AJ, Humphreys M, Hogan A, Hayes P, O'Reilly M, Jeffery IB, Wood-Martin R, et al. Exercise and associated dietary extremes impact on gut microbial diversity. Gut 2014; 63:1913-20; PMID:25021423; http://dx.doi.org/10.1136/gutjnl-2013-306541
  • Ahn J, Sinha R, Pei Z, Dominianni C, Wu J, Shi J, Goedert JJ, Hayes RB, Yang L. Human gut microbiome and risk of colorectal cancer. J Natl Cancer Inst 2013; 105:1907-11; PMID:24316595; http://dx.doi.org/10.1093/jnci/djt300
  • Scher JU, Ubeda C, Artacho A, Attur M, Isaac S, Reddy SM, Marmon S, Neimann A, Brusca S, Patel T, et al. Decreased bacterial diversity characterizes the altered gut microbiota in patients with psoriatic arthritis, resembling dysbiosis in inflammatory bowel disease. Arthritis Rheumatol 2015; 67:128-39; PMID:25319745; http://dx.doi.org/10.1002/art.38892
  • Martens EC. Microbiome: Fibre for the future. Nature 2016; 529:158-9; PMID:26762451; http://dx.doi.org/10.1038/529158a
  • Camire M, Cho S, Craig S, Devrie J, Gordon D, Jones J, et al. The definition of dietary fiber. Cereal Foods World 2001; 46:112-24
  • Commission CA. Report of the 30th session of the codex committee on nutrition and foods for special dietary uses. Cape Town, South Africa: ALINORM, 2008.
  • Cuskin F, Lowe EC, Temple MJ, Zhu Y, Cameron EA, Pudlo NA, Porter NT, Urs K, Thompson AJ, Cartmell A, et al. Human gut Bacteroidetes can utilize yeast mannan through a selfish mechanism. Nature 2015; 517:165-9; PMID:25567280; http://dx.doi.org/10.1038/nature13995
  • El Kaoutari A, Armougom F, Gordon JI, Raoult D, Henrissat B. The abundance and variety of carbohydrate-active enzymes in the human gut microbiota. Nat Rev Microbiol 2013; 11:497-504; PMID:23748339; http://dx.doi.org/10.1038/nrmicro3050
  • Larsbrink J, Rogers TE, Hemsworth GR, McKee LS, Tauzin AS, Spadiut O, et al. A discrete genetic locus confers xyloglucan metabolism in select human gut Bacteroidetes. Nature 2014; 506:498-502; PMID:24463512; http://dx.doi.org/10.1038/nature12907
  • Martens EC, Lowe EC, Chiang H, Pudlo NA, Wu M, McNulty NP, et al. Recognition and degradation of plant cell wall polysaccharides by two human gut symbionts. PLoS Biol 2011; 9:e1001221; PMID:22205877; http://dx.doi.org/10.1371/journal.pbio.1001221
  • Davidson MH, McDonald A. Fiber: Forms and functions. Nutr Res 1998; 18:617-24; http://dx.doi.org/10.1016/S0271-5317(98)00048-7
  • Hamaker BR, Tuncil YE. A perspective on the complexity of dietary fiber structures and their potential effect on the gut microbiota. J Mol Biol 2014; 426:3838-50; PMID:25088686; http://dx.doi.org/10.1016/j.jmb.2014.07.028
  • Ze X, Le Mougen F, Duncan SH, Louis P, Flint HJ. Some are more equal than others: the role of “keystone” species in the degradation of recalcitrant substrates. Gut Microbes 2013; 4:236-40; PMID:23549436; http://dx.doi.org/10.4161/gmic.23998
  • Sonnenburg ED, Smits SA, Tikhonov M, Higginbottom SK, Wingreen NS, Sonnenburg JL. Diet-induced extinctions in the gut microbiota compound over generations. Nature 2016; 529:212-5; PMID:26762459; http://dx.doi.org/10.1038/nature16504
  • Brinkworth GD, Noakes M, Clifton PM, Bird AR. Comparative effects of very low-carbohydrate, high-fat and high-carbohydrate, low-fat weight-loss diets on bowel habit and faecal short-chain fatty acids and bacterial populations. Br J Nutr 2009; 101:1493-502; PMID:19224658; http://dx.doi.org/10.1017/S0007114508094658
  • Duncan SH, Belenguer A, Holtrop G, Johnstone AM, Flint HJ, Lobley GE. Reduced dietary intake of carbohydrates by obese subjects results in decreased concentrations of butyrate and butyrate-producing bacteria in feces. Appl Environ Microbiol 2007; 73:1073-8; PMID:17189447; http://dx.doi.org/10.1128/AEM.02340-06
  • Sheflin AM, Borresen EC, Kirkwood JS, Boot CM, Whitney AK, Lu S, Brown RJ, Broeckling CD, Ryan EP, Weir TL. Dietary supplementation with rice bran or navy bean alters gut bacterial metabolism in colorectal cancer survivors. Mol Nutr Food Res 2016; PMID:27461523
  • Tap J, Furet JP, Bensaada M, Philippe C, Roth H, Rabot S, Lakhdari O, Lombard V, Henrissat B, Corthier G, et al. Gut microbiota richness promotes its stability upon increased dietary fibre intake in healthy adults. Environ Microbiol 2015; 17:4954-64; PMID:26235304; http://dx.doi.org/10.1111/1462-2920.13006
  • Cotillard A, Kennedy SP, Kong LC, Prifti E, Pons N, Le Chatelier E, lmeida M, Quinquis B, Levenez F, Galleron N, et al. Dietary intervention impact on gut microbial gene richness. Nature 2013; 500:585-8; PMID:23985875; http://dx.doi.org/10.1038/nature12480
  • O'Keefe SJ, Li JV, Lahti L, Ou J, Carbonero F, Mohammed K, Posma JM, Kinross J, Wahl E, Ruder E, et al. Fat, fibre and cancer risk in African Americans and rural Africans. Nat Commun 2015; 6:6342; http://dx.doi.org/10.1038/ncomms7342
  • Graf D, Di Cagno R, Fåk F, Flint HJ, Nyman M, Saarela M, Watzl B. Contribution of diet to the composition of the human gut microbiota. Microb Ecol Health Dis 2015; 26:26164; ISSN: 1651-2235; PMID:25656825.
  • Baer DJ, Stote KS, Henderson T, Paul DR, Okuma K, Tagami H, Kanahori S, Gordon DT, Rumpler WV, Ukhanova M, et al. The metabolizable energy of dietary resistant maltodextrin is variable and alters fecal microbiota composition in adult men. J Nutr 2014; 144:1023-9; PMID:24744316; http://dx.doi.org/10.3945/jn.113.185298
  • Walton GE, van den Heuvel EG, Kosters MH, Rastall RA, Tuohy KM, Gibson GR. A randomised crossover study investigating the effects of galacto-oligosaccharides on the faecal microbiota in men and women over 50 years of age. Br J Nutr 2012; 107:1466-75; PMID:21910949; http://dx.doi.org/10.1017/S0007114511004697
  • Costabile A, Klinder A, Fava F. Whole-grain wheat breakfast cereal has a prebiotic effect on the human gut microbiota: a double-blind, placebo-controlled, crossover study. Brit J Nutr 2008; 99:110-120; PMID:17761020; http://dx.doi.org/10.1017/S0007114507793923
  • Martínez I, Lattimer JM, Hubach KL, Case JA, Yang J, Weber CG, Louk JA, Rose DJ, Kyureghian G, Peterson DA, et al. Gut microbiome composition is linked to whole grain-induced immunological improvements. ISME J 2013; 7:269-80; http://dx.doi.org/10.1038/ismej.2012.104
  • Walker AW, Ince J, Duncan SH, Webster LM, Holtrop G, Ze X, Brown D, Stares MD, Scott P, Bergerat A, et al. Dominant and diet-responsive groups of bacteria within the human colonic microbiota. ISME J 2010; 5:220-30; PMID:20686513; http://dx.doi.org/10.1038/ismej.2010.118
  • Ze X, Duncan SH, Louis P, Flint HJ. Ruminococcus bromii is a keystone species for the degradation of resistant starch in the human colon. The ISME J 2012; 6:1535-43; PMID:22343308; http://dx.doi.org/10.1038/ismej.2012.4
  • Macfarlane G, Steed H, Macfarlane S. Bacterial metabolism and health‐related effects of galacto‐oligosaccharides and other prebiotics. J Appl Microbiol 2008; 104:305-44; PMID:18215222
  • Vivatvakin B, Mahayosnond A, Theamboonlers A, Steenhout PG, Conus NJ. Effect of a whey-predominant starter formula containing LCPUFAs and oligosaccharides (FOS/GOS) on gastrointestinal comfort in infants. Asia Pacific Journal of Clinical Nutrition 2010; 19:473-80; PMID:21147707
  • Vulevic J, Juric A, Tzortzis G, Gibson GR. A mixture of trans-galactooligosaccharides reduces markers of metabolic syndrome and modulates the fecal microbiota and immune function of overweight adults. J Nutr 2013; 143:324-31; PMID:23303873; http://dx.doi.org/10.3945/jn.112.166132
  • Scott KP, Gratz SW, Sheridan PO, Flint HJ, Duncan SH. The influence of diet on the gut microbiota. Pharmacol Res 2013; 69:52-60; PMID:23147033; http://dx.doi.org/10.1016/j.phrs.2012.10.020
  • Falony G, Calmeyn T, Leroy F, De Vuyst L. Coculture fermentations of Bifidobacterium species and Bacteroides thetaiotaomicron reveal a mechanistic insight into the prebiotic effect of inulin-type fructans. Appl Environ Microbiol 2009; 75:2312-9; PMID:19251883; http://dx.doi.org/10.1128/AEM.02649-08
  • Scott KP, Martin JC, Chassard C, Clerget M, Potrykus J, Campbell G, Mayer CD, Young P, Rucklidge G, Ramsay AG, et al. Substrate-driven gene expression in Roseburia inulinivorans: importance of inducible enzymes in the utilization of inulin and starch. Proc Natl Acad Sci USA 2011; 108:4672-9; PMID:20679207; http://dx.doi.org/10.1073/pnas.1000091107
  • Lecerf J-M, Dépeint F, Clerc E, Dugenet Y, Niamba CN, Rhazi L, Cayzeele A, Abdelnour G, Jaruga A, Younes H, et al. Xylo-oligosaccharide (XOS) in combination with inulin modulates both the intestinal environment and immune status in healthy subjects, while XOS alone only shows prebiotic properties. Br J Nutr 2012; 108:1847-58; PMID:22264499; http://dx.doi.org/10.1017/S0007114511007252
  • Dewulf EM, Cani PD, Claus SP, Fuentes S, Puylaert PG, Neyrinck AM, Bindels LB, de Vos WM, Gibson GR, Thissen JP, et al. Insight into the prebiotic concept: lessons from an exploratory, double blind intervention study with inulin-type fructans in obese women. Gut 2013; 62:1112-21; PMID:23135760; http://dx.doi.org/10.1136/gutjnl-2012-303304
  • García-Peris P, Velasco C, Lozano M, Moreno Y, Paron L, de la Cuerda C, Bretón I, Camblor M, García-Hernández J, Guarner F, et al. Effect of a mixture of inulin and fructo-oligosaccharide on Lactobacillus and Bifidobacterium intestinal microbiota of patients receiving radiotherapy: a randomised, double-blind, placebo-controlled trial. Nutr Hosp 2012; 27:1908-15; PMID:23588438
  • Waitzberg DL, Pereira CA, Logullo L, Jacintho TM, Almeida D, Silva M, Matos de Miranda Torrinhas RS. Microbiota benefits after inulin and partially hydrolized guar gum supplementation–a randomized clinical trial in constipated women. Nutr Hosp 2012; 27:123-9; PMID:22566311
  • Grootaert C, Van den Abbeele P, Marzorati M, Broekaert WF, Courtin CM, Delcour JA, Verstraete W, Van de Wiele T. Comparison of prebiotic effects of arabinoxylan oligosaccharides and inulin in a simulator of the human intestinal microbial ecosystem. FEMS Microbiol Ecol 2009; 69:231-42; PMID:19508502; http://dx.doi.org/10.1111/j.1574-6941.2009.00712.x
  • Rossi M, Corradini C, Amaretti A, Nicolini M, Pompei A, Zanoni S, Matteuzzi D. Fermentation of fructooligosaccharides and inulin by bifidobacteria: a comparative study of pure and fecal cultures. Appl Environ Microbiol 2005; 71:6150-8; PMID:16204533; http://dx.doi.org/10.1128/AEM.71.10.6150-6158.2005
  • Van de Wiele T, Boon N, Possemiers S, Jacobs H, Verstraete W. Inulin‐type fructans of longer degree of polymerization exert more pronounced in vitro prebiotic effects. J ApplMicrobiol 2007; 102:452-60; PMID:17241351
  • Juśkiewicz J, Zduńczyk Z, Frejnagel S. Caecal parameters of rats fed diets supplemented with inulin in exchange for sucrose. Archives of Animal Nutrition 2007; 61:201-10; PMID:17578262; http://dx.doi.org/10.1080/17450390701297735
  • Sakaguchi E, Sakoda C, Toramaru Y. Caecal fermentation and energy accumulation in the rat fed on indigestible oligosaccharides. Br J Nutr 1998; 80:469-76; PMID:9924269
  • Van den Abbeele P, Gérard P, Rabot S, Bruneau A, El Aidy S, Derrien M, Kleerebezem M, Zoetendal EG, Smidt H, Verstraete W, et al. Arabinoxylans and inulin differentially modulate the mucosal and luminal gut microbiota and mucin‐degradation in humanized rats. Environ Microbiol 2011; 13:2667-80; PMID:21883787; http://dx.doi.org/10.1111/j.1462-2920.2011.02533.x
  • Leschine SB. Cellulose degradation in anaerobic environments. AnnRev Microbiol 1995; 49:399-426; http://dx.doi.org/10.1146/annurev.mi.49.100195.002151
  • Slavin JL, Brauer PM, Marlett JA. Neutral detergent fiber, hemicellulose and cellulose digestibility in human subjects. J Nutr 1981; 111:287-97; PMID:6257867
  • Van Soest PJ. Dietary fibers: their definition and nutritional properties. Am J Clin Nutr 1978; 31:S12-S20; PMID:707360
  • Chassard C, Delmas E, Robert C, Bernalier-Donadille A. The cellulose-degrading microbial community of the human gut varies according to the presence or absence of methanogens. FEMS Microbiol Ecol 2010; 74:205-13; PMID:20662929; http://dx.doi.org/10.1111/j.1574-6941.2010.00941.x
  • Montgomery L. Isolation of human colonic fibrolytic bacteria. Lett Appl Microbiol 1988; 6:55-7; http://dx.doi.org/10.1111/j.1472-765X.1988.tb01214.x
  • Robert C, Bernalier-Donadille A. The cellulolytic microflora of the human colon: evidence of microcrystalline cellulose-degrading bacteria in methane-excreting subjects. FEMS Microbiol Ecol 2003; 46:81-9; PMID:19719585; http://dx.doi.org/10.1016/S0168-6496(03)00207-1
  • Wedekind K, Mansfield H, Montgomery L. Enumeration and isolation of cellulolytic and hemicellulolytic bacteria from human feces. Appl Environ Microbiol 1988; 54:1530-5; PMID:3415224
  • Betian H, Linehan B, Bryant M, Holdeman L. Isolation of a cellulolytic bacteroides sp. from human feces. Appl Environ Microbiol 1977; 33:1009-10; PMID:869523
  • Hughes SA, Shewry PR, Gibson GR, McCleary BV, Rastall RA. In vitro fermentation of oat and barley derived β-glucans by human faecal microbiota. FEMS Microbiol Ecol 2008; 64:482-93; PMID:18430007; http://dx.doi.org/10.1111/j.1574-6941.2008.00478.x
  • Dongowski G, Lorenz A, Proll J. The degree of methylation influences the degradation of pectin in the intestinal tract of rats and in vitro. J Nutr 2002; 132:1935-44; PMID:12097673
  • Licht TR, Hansen M, Bergström A, Poulsen M, Krath BN, Markowski J, et al. Effects of apples and specific apple components on the cecal environment of conventional rats: Role of apple pectin. BMC Microbiology 2010; 10:13 doi: 10.1186/1471-2180-10-13; PMID:20089145; http://dx.doi.org/10.1186/1471-2180-10-13
  • Carvalho-Wells AL, Helmolz K, Nodet C, Molzer C, Leonard C, McKevith B, et al. Determination of the in vivo prebiotic potential of a maize-based whole grain breakfast cereal: A human feeding study. Brit J Nutr 2010; 104:1353-6; PMID:20487589; http://dx.doi.org/10.1017/S0007114510002084
  • Sheflin AM, Borresen EC, Wdowik MJ, Rao S, Brown RJ, Heuberger AL, et al. Pilot dietary intervention with heat-stabilized rice bran modulates stool microbiota and metabolites in healthy adults. Nutrients 2015; 7:1282-300; PMID:25690418; http://dx.doi.org/10.3390/nu7021282
  • Shinohara K, Ohashi Y, Kawasumi K, Terada A, Fujisawa T. Effect of apple intake on fecal microbiota and metabolites in humans. Anaerobe 2010; 16:510-5; PMID:20304079; http://dx.doi.org/10.1016/j.anaerobe.2010.03.005
  • Mitsou E, Kougia E, Nomikos T, Yannakoulia M, Mountzouris K, Kyriacou A. Effect of banana consumption on faecal microbiota: A randomised, controlled trial. Anaerobe 2011; 17:384-7; PMID:21524710; http://dx.doi.org/10.1016/j.anaerobe.2011.03.018
  • Fernando W, Hill J, Zello G, Tyler R, Dahl W, Van Kessel A. Diets supplemented with chickpea or its main oligosaccharide component raffinose modify faecal microbial composition in healthy adults. Beneficial Microbes 2010; 1:197-207; PMID:21831757; http://dx.doi.org/10.3920/BM2009.0027
  • Varshney J. The beneficial effects of white button mushrooms on the gut health [master's thesis]. [State College]: The Pennsylvania State University; 2012.
  • Klinder A, Shen Q, Heppel S, Lovegrove JA, Rowland I, Tuohy KM. Impact of increasing fruit and vegetables and flavonoid intake on the human gut microbiota. Food Funct 2016; 7:1788-96; PMID:26757793; http://dx.doi.org/10.1039/C5FO01096A
  • den Besten G, van Eunen K, Groen AK, Venema K, Reijngoud DJ, Bakker BM. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J Lipid Res 2013; 54:2325-40; PMID:23821742; http://dx.doi.org/10.1194/jlr.R036012
  • van Duynhoven J, Vaughan EE, Jacobs DM, Kemperman RA, van Velzen EJJ, Gross G, et al. Metabolic fate of polyphenols in the human superorganism. ProcNatl Acad Sci USA 2011; 108:4531-8; http://dx.doi.org/10.1073/pnas.1000098107
  • Thibodeau A, Fravalo P, Yergeau E, Arsenault J, Lahaye L, Letellier A. Chicken caecal microbiome modifications induced by campylobacter jejuni colonization and by a non-antibiotic feed additive. PLoS One 2015; 10:e0131978; PMID:26161743; http://dx.doi.org/10.1371/journal.pone.0131978
  • Du E, Gan L, Li Z, Wang W, Liu D, Guo Y. In vitro antibacterial activity of thymol and carvacrol and their effects on broiler chickens challenged with Clostridium perfringens. Anim Sci Biotechnol 2015; 6:58, 015-0055-7; ; http://dx.doi.org/10.1186/s40104-015-0055-7
  • Thapa D, Losa R, Zweifel B, Wallace RJ. Sensitivity of pathogenic and commensal bacteria from the human colon to essential oils. Microbiology 2012; 158:2870-7; PMID:22878397; http://dx.doi.org/10.1099/mic.0.061127-0
  • Thapa D, Louis P, Losa R, Zweifel B, Wallace RJ. Essential oils have different effects on human pathogenic and commensal bacteria in mixed faecal fermentations compared with pure cultures. Microbiology 2015; 161:441-9; PMID:25500493; http://dx.doi.org/10.1099/mic.0.000009
  • Tiihonen K, Kettunen H, Bento MH, Saarinen M, Lahtinen S, Ouwehand AC, Schulze H, Rautonen N. The effect of feeding essential oils on broiler performance and gut microbiota. Br Poult Sci 2010; 51:381-92; PMID:20680873; http://dx.doi.org/10.1080/00071668.2010.496446
  • Mosele JI, Martin-Pelaez S, Macia A, Farras M, Valls RM, Catalan U, et al. Study of the catabolism of thyme phenols combining in vitro fermentation and human intervention. J Agric Food Chem 2014; 62:10954-61; PMID:25339317; http://dx.doi.org/10.1021/jf503748y
  • Ludwig IA, Paz de Pena M, Concepcion C, Alan C. Catabolism of coffee chlorogenic acids by human colonic microbiota. Biofactors 2013; 39:623-32; PMID:23904092; http://dx.doi.org/10.1002/biof.1124
  • Mills CE, Tzounis X, Oruna-Concha MJ, Mottram DS, Gibson GR, Spencer JP. In vitro colonic metabolism of coffee and chlorogenic acid results in selective changes in human faecal microbiota growth. Br J Nutr 2015; 113:1220-7; PMID:25809126; http://dx.doi.org/10.1017/S0007114514003948
  • Tomas-Barberan F, Garcia-Villalba R, Quartieri A, Raimondi S, Amaretti A, Leonardi A, Rossi M. In vitro transformation of chlorogenic acid by human gut microbiota. Mol Nutr Food Res 2014; 58:1122-31; PMID:24550206; http://dx.doi.org/10.1002/mnfr.201300441
  • Raimondi S, Anighoro A, Quartieri A, Amaretti A, Tomas-Barberan FA, Rastelli G, Rossi M. Role of bifidobacteria in the hydrolysis of chlorogenic acid. Microbiology Open 2015; 4:41-52; PMID:25515139; http://dx.doi.org/10.1002/mbo3.219
  • Braune A, Blaut M. Bacterial species involved in the conversion of dietary flavonoids in the human gut. Gut Microbes 2016; 7:216-34; PMID:26963713; http://dx.doi.org/10.1080/19490976.2016.1158395
  • Zhang Z, Peng X, Li S, Zhang N, Wang Y, Wei H. Isolation and identification of quercetin degrading bacteria from human fecal microbes. PLoS One 2014; 9:e90531; PMID:24594786; http://dx.doi.org/10.1371/journal.pone.0090531
  • Etxeberria U, Arias N, Boque N, Macarulla MT, Portillo MP, Martinez JA, Milagro FI. Reshaping faecal gut microbiota composition by the intake of trans-resveratrol and quercetin in high-fat sucrose diet-fed rats. J Nutr Biochem 2015; 26:651-60; PMID:25762527; http://dx.doi.org/10.1016/j.jnutbio.2015.01.002
  • Setchell KD, Equol CC. History, chemistry, and formation. J Nutr 2010; 140:1355S-62S; PMID:20519412; http://dx.doi.org/10.3945/jn.109.119776
  • Matthies A, Loh G, Blaut M, Braune A. Daidzein and genistein are converted to equol and 5-hydroxy-equol by human intestinal slackia isoflavoniconvertens in gnotobiotic rats. J Nutr 2012; 142:40-6; PMID:22113864; http://dx.doi.org/10.3945/jn.111.148247
  • Frankenfeld CL, Atkinson C, Wahala K, Lampe JW. Obesity prevalence in relation to gut microbial environments capable of producing equol or O-desmethylangolensin from the isoflavone daidzein. Eur J Clin Nutr 2014; 68:526-30; PMID:24569543; http://dx.doi.org/10.1038/ejcn.2014.23
  • Reverri EJ, Slupsky CM, Mishchuk DO, Steinberg FM. Metabolomics reveals differences between three daidzein metabolizing phenotypes in adults with cardiometabolic risk factors. Mol Nutr Food Res 2016; PMID:27364093
  • Tome-Carneiro J, Gonzalvez M, Larrosa M, Yanez-Gascon MJ, Garcia-Almagro FJ, Ruiz-Ros JA, Tomás-Barberán FA, García-Conesa MT, Espín JC. Resveratrol in primary and secondary prevention of cardiovascular disease: A dietary and clinical perspective. Ann N Y Acad Sci 2013; 1290:37-51; PMID:23855464; http://dx.doi.org/10.1111/nyas.12150
  • Nunez-Sanchez MA, Gonzalez-Sarrias A, Romo-Vaquero M, Garcia-Villalba R, Selma MV, Tomas-Barberan FA, García-Conesa MT, Espín JC. Dietary phenolics against colorectal cancer–from promising preclinical results to poor translation into clinical trials: Pitfalls and future needs. Mol Nutr Food Res 2015; 59:1274-91; PMID:25693744; http://dx.doi.org/10.1002/mnfr.201400866
  • Larrosa M, Yanez-Gascon MJ, Selma MV, Gonzalez-Sarrias A, Toti S, Ceron JJ, Tomás-Barberán F, Dolara P, Espín JC. Effect of a low dose of dietary resveratrol on colon microbiota, inflammation and tissue damage in a DSS-induced colitis rat model. J Agric Food Chem 2009; 57:2211-20; PMID:19228061; http://dx.doi.org/10.1021/jf803638d
  • Chen ML, Yi L, Zhang Y, Zhou X, Ran L, Yang J, et al. Resveratrol attenuates trimethylamine-N-oxide (TMAO)-induced atherosclerosis by regulating TMAO synthesis and bile acid metabolism via remodeling of the gut microbiota. MBio 2016; 7(2):e02210-15; http://dx.doi.org/10.1128/mBio.02210-15
  • Bode LM, Bunzel D, Huch M, Cho GS, Ruhland D, Bunzel M, Bub A, Franz CM, Kulling SE. In vivo and in vitro metabolism of trans-resveratrol by human gut microbiota. Am J Clin Nutr 2013; 97:295-309; PMID:23283496; http://dx.doi.org/10.3945/ajcn.112.049379
  • Espin JC, Larrosa M, Garcia-Conesa MT, Tomás-Barberán F. Biological significance of urolithins, the gut microbial ellagic acid-derived metabolites: The evidence so far. Evid Based Complement Alternat Med 2013; 2013:270418; PMID:23781257; http://dx.doi.org/10.1155/2013/270418
  • Tulipani S, Urpi-Sarda M, Garcı́a-Villalba R, Rabassa M, López-Uriarte P, Bulló M, Jáuregui O, Tomás-Barberán F, Salas-Salvadó J, Espín JC, et al. Urolithins are the main urinary microbial-derived phenolic metabolites discriminating a moderate consumption of nuts in free-living subjects with diagnosed metabolic syndrome. J Agric Food Chem 2012; 60:8930-40; PMID:22631214; http://dx.doi.org/10.1021/jf301509w
  • Tomas-Barberan FA, Gonzalez-Sarrias A, Garcia-Villalba R, Nunez-Sanchez MA, Selma MV, Garcia-Conesa MT, Espín JC. Urolithins, the rescue of ‘old’ metabolites to understand a ‘new’ concept: Metabotypes as a nexus between phenolic metabolism, microbiota dysbiosis and host health status. Mol Nutr Food Res 2016.
  • Li Z, Summanen PH, Komoriya T, Henning SM, Lee RP, Carlson E, Heber D, Finegold SM. Pomegranate ellagitannins stimulate growth of gut bacteria in vitro: Implications for prebiotic and metabolic effects. Anaerobe 2015; 34:164-8; PMID:26051169; http://dx.doi.org/10.1016/j.anaerobe.2015.05.012
  • Li Z, Henning SM, Lee R-P, Lu Q-Y, Summanen PH, Thames G, Corbett K, Downes J, Tseng CH, Finegold SM, et al. Pomegranate extract induces ellagitannin metabolite formation and changes stool microbiota in healthy volunteers. Food & Function 2015; 6:2487-95; PMID:26189645; http://dx.doi.org/10.1039/C5FO00669D
  • Garcia-Munoz C, Vaillant F. Metabolic fate of ellagitannins: Implications for health, and research perspectives for innovative functional foods. Crit Rev Food Sci Nutr 2014; 54; PMID:24580560; http://dx.doi.org/10.1080/10408398.2011.644643
  • Faria A, Fernandes I, Norberto S, Mateus N, Calhau C. Interplay between anthocyanins and gut microbiota. J Agric Food Chem 2014; 62:6898-902; PMID:24915058; http://dx.doi.org/10.1021/jf501808a
  • Espley RV, Butts CA, Laing WA, Martell S, Smith H, McGhie TK, Zhang J, Paturi G, Hedderley D, Bovy A, et al. Dietary flavonoids from modified apple reduce inflammation markers and modulate gut microbiota in mice. J Nutr 2014; 144:146-54; PMID:24353343; http://dx.doi.org/10.3945/jn.113.182659
  • Hanske L, Engst W, Loh G, Sczesny S, Blaut M, Braune A. Contribution of gut bacteria to the metabolism of cyanidin 3 glucoside in human microbiota-associated rats. Br J Nutr 2013; 109:1433-41; PMID:22906731; http://dx.doi.org/10.1017/S0007114512003376
  • van Duynhoven J, Vaughan EE, van Dorsten F, Gomez-Roldan V, de Vos R, Vervoort J, van der Hooft JJ, Roger L, Draijer R, Jacobs DM. Interactions of black tea polyphenols with human gut microbiota: Implications for gut and cardiovascular health. Am J Clin Nutr 2013; 98:1631S-41S; PMID:24172295; http://dx.doi.org/10.3945/ajcn.113.058263
  • Seo DB, Jeong HW, Cho D, Lee BJ, Lee JH, Choi JY, et al. Fermented green tea extract alleviates obesity and related complications and alters gut microbiota composition in diet-induced obese mice. J Med Food 2015; 18:549-56; PMID:25764354; http://dx.doi.org/10.1089/jmf.2014.3265
  • Foster MT, Gentile CL, Cox-York K, Wei Y, Wang D, Estrada AL, Reese L, Miller T, Pagliassotti MJ, Weir TL. Fuzhuan tea consumption imparts hepatoprotective effects and alters intestinal microbiota in high saturated fat diet-fed rats. Mol Nutr Food Res 2016; 60:1213-20; PMID:26890069; http://dx.doi.org/10.1002/mnfr.201500654
  • Janssens PL, Penders J, Hursel R, Budding AE, Savelkoul PH, Westerterp-Plantenga MS. Long-term green tea supplementation does not change the human gut microbiota. PLoS One 2016; 11:e0153134; PMID:27054321; http://dx.doi.org/10.1371/journal.pone.0153134
  • van Duynhoven J, van der Hooft JJ, van Dorsten FA, Peters S, Foltz M, Gomez-Roldan V, Vervoort J, de Vos RC, Jacobs DM. Rapid and sustained systemic circulation of conjugated gut microbial catabolites after single-dose black tea extract consumption. J Proteome Res 2014; 13:2668-78; PMID:24673575; http://dx.doi.org/10.1021/pr5001253
  • Clarke KA, Dew TP, Watson RE, Farrar MD, Osman JE, Nicolaou A, Rhodes LE, Williamson G. Green tea catechins and their metabolites in human skin before and after exposure to ultraviolet radiation. J Nurt Biochem 2016; 27:203-10; http://dx.doi.org/10.1016/j.jnutbio.2015.09.001
  • Jaquet M, Rochat I, Moulin J, Cavin C, Bibiloni R. Impact of coffee consumption on the gut microbiota: A human volunteer study. Int J Food Microbiol 2009; 130:117-21; PMID:19217682; http://dx.doi.org/10.1016/j.ijfoodmicro.2009.01.011
  • Nakayama T, Oishi K. Influence of coffee (coffea arabica) and galacto-oligosaccharide consumption on intestinal microbiota and the host responses. FEMS Microbiol Lett 2013; 343:161-8; PMID:23551139; http://dx.doi.org/10.1111/1574-6968.12142
  • Massot-Cladera M, Perez-Berezo T, Franch A, Castell M, Pérez-Cano FJ. Cocoa modulatory effect on rat faecal microbiota and colonic crosstalk. Arch Biochem Biophys 2012; 527:105-12; PMID:22663919; http://dx.doi.org/10.1016/j.abb.2012.05.015
  • Jang S, Sun J, Chen P, Lakshman S, Molokin A, Harnly JM, Vinyard BT, Urban JF Jr, Davis CD, Solano-Aguilar G. Flavanol-enriched cocoa powder alters the intestinal microbiota, tissue and fluid metabolite profiles, and intestinal gene expression in pigs. J Nutr 2016; 146:673-80; PMID:26936136; http://dx.doi.org/10.3945/jn.115.222968
  • Tzounis X, Rodriguez-Mateos A, Vulevic J, Gibson GR, Kwik-Uribe C, Spencer JP. Prebiotic evaluation of cocoa-derived flavanols in healthy humans by using a randomized, controlled, double-blind, crossover intervention study. Am J Clin Nutr 2011; 93:67-72; http://dx.doi.org/10.3945/ajcn.110.000075
  • Martin FP, Montoliu I, Nagy K, Moco S, Collino S, Guy P, Redeuil K, Scherer M, Rezzi S, Kochhar S. Specific dietary preferences are linked to differing gut microbial metabolic activity in response to dark chocolate intake. J Proteome Res 2012; 11:6252-63; PMID:23163751; http://dx.doi.org/10.1021/pr300915z
  • Puupponen-Pimiä R, Seppänen-Laakso T, Kankainen M, Maukonen J, Törrönen R, Kolehmainen M, Leppänen T, Moilanen E, Nohynek L, Aura AM, et al. Effects of ellagitannin-rich berries on blood lipids, gut microbiota, and urolithin production in human subjects with symptoms of metabolic syndrome. Mol Nutr Food Res 2013; 57:2258-63; http://dx.doi.org/10.1002/mnfr.201300280
  • Truchado P, Larrosa M, García-Conesa MT, Cerdá B, Vidal-Guevara ML, Tomás-Barberán FA, Espín JC. Strawberry processing does not affect the production and urinary excretion of urolithins, ellagic acid metabolites, in humans. J Ag Food Chem 2012; 60:5749-54; http://dx.doi.org/10.1021/jf203641r
  • Jakobsdottir G, Blanco N, Xu J, Ahrn S, et al. Formation of short-chain fatty acids, excretion of anthocyanins, and microbial diversity in rats fed blackcurrants, blackberries, and raspberries. J Nutr Met 2013; 202534; http://dx.doi.org/10.1155/2013/202534
  • Neyrinck AM, Van Hee VF, Bindels LB, De Backer F, Cani PD, Delzenne NM. Polyphenol-rich extract of pomegranate peel alleviates tissue inflammation and hypercholesterolaemia in high-fat diet-induced obese mice: Potential implication of the gut microbiota. Br J Nutr 2013; 109:802-9; PMID:22676910; http://dx.doi.org/10.1017/S0007114512002206
  • Nuñez-Sánchez MA, García-Villalba R, Monedero-Saiz T, García-Talavera NV, Gómez-Sánchez MB, Sánchez-Álvarez C, García-Albert AM, Rodríguez-Gil FJ, Ruiz-Marín M, Pastor-Quirante FA, et al. Targeted metabolic profiling of pomegranate polyphenols and urolithins in plasma, urine and colon tissues from colorectal cancer patients. Mol Nutr Food Res 2014; 58:1199-211; http://dx.doi.org/10.1002/mnfr.201300931
  • Bialonska D, Ramnani P, Kasimsetty SG, Muntha KR, Gibson GR, Ferreira D. The influence of pomegranate by-product and punicalagins on selected groups of human intestinal microbiota. Int J Food Microbiol 2010; 140:175-82; PMID:20452076; http://dx.doi.org/10.1016/j.ijfoodmicro.2010.03.038
  • Ojo B, El-Rassi GD, Payton ME, Perkins-Veazie P, Clarke S, Smith BJ, Lucas EA. Mango supplementation modulates gut microbial dysbiosis and short-chain fatty acid production independent of body weight reduction in C57BL/6 mice fed a high-fat diet. J Nutr 2016; PMID:27358411
  • Pereira-Caro G, Borges G, Ky I, Ribas A, Calani L, Del Rio D, Clifford MN, Roberts SA, Crozier A. In vitro colonic catabolism of orange juice (poly)phenols. Mol Nutr Food Res 2015; 59:465-75; PMID:25545994; http://dx.doi.org/10.1002/mnfr.201400779
  • Vallejo F, Larrosa M, Escudero E, Zafrilla MP, Cerda B, Boza J, García-Conesa MT, Espín JC, Tomás-Barberán FA. Concentration and solubility of flavanones in orange beverages affect their bioavailability in humans. J Agric Food Chem 2010; 58:6516-24; PMID:20441150; http://dx.doi.org/10.1021/jf100752j
  • Pereira-Caro G, Ludwig IA, Polyviou T, Malkova D, García A, Moreno-Rojas JM, Crozier A. Identification of plasma and urinary metabolites and catabolites derived from orange juice (Poly)phenols: Analysis by high-performance liquid chromatography–high-resolution mass spectrometry. J Agr Food Chem 2016; 64:5724-35; PMID:27339035; http://dx.doi.org/10.1021/acs.jafc.6b02088
  • Lewis ZT, Totten SM, Smilowitz JT, Popovic M, Parker E, Lemay DG, Van Tassell ML, Miller MJ, Jin YS, German JB, et al. Maternal fucosyltransferase 2 status affects the gut bifidobacterial communities of breastfed infants. Microbiome 2015; 3:1-21; PMID:25621171; http://dx.doi.org/10.1186/s40168-015-0071-z
  • Suez J, Korem T, Zeevi D, Zilberman-Schapira G, Thaiss CA, Maza O, Israeli D, Zmora N, Gilad S, Weinberger A, et al. Artificial sweeteners induce glucose intolerance by altering the gut microbiota. Nature 2014; 514:181-6; PMID:25231862

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.