27,737
Views
173
CrossRef citations to date
0
Altmetric
Review

Gut Bacteroides species in health and disease

ORCID Icon & ORCID Icon
Article: 1848158 | Received 02 May 2020, Accepted 29 Oct 2020, Published online: 03 Feb 2021

References

  • Thursby E, Juge N. Introduction to the human gut microbiota. Biochem J. 2017;74(1823–36):3. doi:10.1042/BCJ20160510.
  • Bull MJ, Plummer NT. Part 1: the Human Gut Microbiome in Health and Disease. Integr 5 Med (Encinitas). 2014;13:17–20.
  • Barko PC, McMichael MA, Swanson KS, Williams DA. The Gastrointestinal Microbiome: A Review. J Vet Intern Med. 2018;32(1):9–25. doi:10.1111/jvim.14875.
  • Sender R, Fuchs S, Milo R. Revised Estimates for the Number of Human and Bacteria Cells in the Body. PLoS Biol. 2016;14(8):e1002533. doi:10.1371/journal.pbio.1002533.
  • Wexler AG, Goodman AL. An insider’s perspective: bacteroides as a window into the microbiome. Nat Microbiol. 2017;2:17026. doi:10.1038/nmicrobiol.2017.26.
  • Kim S, Covington A, EG P. The intestinal microbiota: antibiotics, colonization resistance, and enteric pathogens. Immunol Rev. 2017;279(1):90–105. doi:10.1111/imr.12563.
  • Wexler HM. Bacteroides: the good, the bad, and the nitty-gritty. Clin Microbiol Rev. 2007;20(4):593–621. doi:10.1128/CMR.00008-07.
  • Koropatkin NM, Cameron EA, Martens EC. How glycan metabolism shapes the human gut microbiota. Nat Rev Microbiol. 2012;10(5):323–335. doi:10.1038/nrmicro2746.
  • Flint HJ, Scott KP, Duncan SH, Louis P, Forano E. Microbial degradation of complex carbohydrates in the gut. Gut Microbes. 2012;3(4):289–306. doi:10.4161/gmic.19897.
  • McKeen S, Young W, Fraser K, Roy NC, McNabb WC. Glycan Utilisation and Function in the Microbiome of Weaning Infants. Microorganisms. 2019:7. doi:10.3390/microorganisms7070190.
  • Derrien M, van Passel MW, van de Bovenkamp JH, Schipper RG, de Vos WM, Dekker J. Mucin-bacterial interactions in the human oral cavity and digestive tract. Gut Microbes. 2010;1(4):254–268. doi:10.4161/gmic.1.4.12778.
  • Corfield AP. The Interaction of the Gut Microbiota with the Mucus Barrier in Health and Disease in Human. Microorganisms. 2018:6. doi:10.3390/microorganisms6030078.
  • Bergstrom KS, Xia L. Mucin-type O-glycans and their roles in intestinal homeostasis. 2 Glycobiology. 2013;23:1026–1037. doi:10.1093/glycob/cwt045.
  • Martens EC, Chiang HC, Gordon JI. Mucosal glycan foraging enhances fitness and transmission of a saccharolytic human gut bacterial symbiont. Cell Host Microbe. 2008;4(5):447–457. doi:10.1016/j.chom.2008.09.007.
  • Marcobal A, Southwick AM, Earle KA, Sonnenburg JL. A refined palate: bacterial consumption of host glycans in the gut. Glycobiology. 2013;23(9):4–1038. doi:10.1093/glycob/cwt040.
  • Coyne MJ, Chatzidaki-Livanis M, Paoletti LC, Comstock LE. Role of glycan synthesis in colonization of the mammalian gut by the bacterial symbiont Bacteroides fragilis. Proc Natl Acad Sci U S A. 2008;105(35):13099–13104. doi:10.1073/pnas.0804220105.
  • Chow J, Lee SM, Shen Y, Khosravi A, Mazmanian SK. Host-bacterial symbiosis in health and disease. Adv Immunol. 2010;107:243–274. doi:10.1016/B978-0-12-381300-8.00008-3.
  • Tailford LE, Crost EH, Kavanaugh D, Juge N. Mucin glycan foraging in the human gut microbiome. Front Genet. 2015;6:81. doi:10.3389/fgene.2015.00081.
  • Sonnenburg ED, Zheng H, Joglekar P, Higginbottom SK, Firbank SJ, Bolam DN. Specificity of polysaccharide use in intestinal bacteroides species determines diet-induced microbiota alterations. Cell. 2010;141(7):1241–1252. doi:10.1016/j.cell.2010.05.005.
  • Grondin JM, Tamura K, Dejean G, Abbott DW, Brumer H. Polysaccharide Utilization Loci: fueling Microbial Communities. J Bacteriol. 2017:199. doi:10.1128/JB.00860-16.
  • Foley MH, Cockburn DW, Koropatkin NM. The Sus operon: a model system for starch uptake by the human gut Bacteroidetes. Cell Mol Life Sci. 2016;73(14):2603–2617. doi:10.1007/s00018-016-2242-x.
  • Rodriguez-Castano GP, Dorris MR, Liu X, Bolling BW, Acosta-Gonzalez A, Rey FE. Bacteroides thetaiotaomicron Starch Utilization Promotes Quercetin Degradation and Butyrate Production by Eubacterium ramulus. Front Microbiol. 2019;10:1145. doi:10.3389/fmicb.2019.01145.
  • Tungmunnithum D, Thongboonyou A, Pholboon A, Yangsabai A. Flavonoids and Other Phenolic Compounds from Medicinal Plants for Pharmaceutical and Medical Aspects: an Overview. Medicines (Basel). 2018:5. doi:10.3390/medicines5030093.
  • Zhao Y, Chen B, Shen J, Wan L, Zhu Y, Yi T. The Beneficial Effects of Quercetin, Curcumin, and Resveratrol in Obesity. Oxid Med Cell Longev. 2017;2017:1459497. doi:10.1155/2017/1459497.
  • Gao K, Xu A, Krul C, Venema K, Liu Y, Niu Y. Of the major phenolic acids formed during human microbial fermentation of tea, citrus, and soy flavonoid supplements, only 3,4– dihydroxyphenylacetic acid has antiproliferative activity. J Nutr. 2006;136(1):52–57. doi:10.1093/jn/136.1.52.
  • Jan AT. Outer Membrane Vesicles (OMVs) of Gram-negative Bacteria: A Perspective Update. Front Microbiol. 2017;8:1053. doi:10.3389/fmicb.2017.01053.
  • Ellis TN, Kuehn MJ. Virulence and immunomodulatory roles of bacterial outer membrane vesicles. Microbiol Mol Biol Rev. 2010;74(1):81–94. doi:10.1128/MMBR.00031-09.
  • Jones EJ, Booth C, Fonseca S, Parker A, Cross K, Miquel-Clopes A. The Uptake, Trafficking, and Biodistribution of Bacteroides thetaiotaomicron Generated Outer Membrane Vesicles. Front Microbiol. 2020;11:57. doi:10.3389/fmicb.2020.00057.
  • Zakharzhevskaya NB, Vanyushkina AA, Altukhov IA, Shavarda AL, Butenko IO, Rakitina DV. Outer membrane vesicles secreted by pathogenic and nonpathogenic Bacteroides fragilis represent different metabolic activities. Sci Rep. 2017;7:5008. doi:10.1038/s41598-017-05264-6.
  • Bryant WA, Stentz R, Le Gall G, Sternberg MJE, Carding SR, Wilhelm T. In Silico Analysis of the Small Molecule Content of Outer Membrane Vesicles Produced by Bacteroides thetaiotaomicron Indicates an Extensive Metabolic Link between Microbe and Host. Front Microbiol. 2017;8:2440. doi:10.3389/fmicb.2017.02440.
  • Elhenawy W, Debelyy MO, Feldman MF. Preferential packing of acidic glycosidases and proteases into Bacteroides outer membrane vesicles. mBio. 2014;5:e00909–14. doi:10.1128/mBio.00909-14.
  • Cecil JD, Sirisaengtaksin N, O’Brien-Simpson NM, Krachler AM. Outer Membrane Vesicle-Host Cell Interactions. Microbiol Spectr. 2019:7. doi:10.1128/microbiolspecPSIB-0001-2018.
  • Han YW. Microbial levan. Adv Appl Microbiol. 1990;35:171–194. doi:10.1016/s0065-2164(08)70244-2.
  • Adamberg S, Tomson K, Vija H, Puurand M, Kabanova N, Visnapuu T. Degradation of Fructans and Production of Propionic Acid by Bacteroides thetaiotaomicron are Enhanced by the Shortage of Amino Acids. Front Nutr. 2014;1:21. doi:10.3389/fnut.2014.00021.
  • Poeker SA, Geirnaert A, Berchtold L, Greppi A, Krych L, Steinert RE. Understanding the prebiotic potential of different dietary fibers using an in vitro continuous adult fermentation model (PolyFermS). Sci Rep. 2018;8(1):4318. doi:10.1038/s41598-018-22438-y.
  • Rakoff-Nahoum S, Foster KR, Comstock LE. The evolution of cooperation within the gut microbiota. Nature. 2016;533(7602):255–259. doi:10.1038/nature17626.
  • Cuskin F, Lowe EC, Temple MJ, Zhu Y, Cameron E, Pudlo NA. Human gut Bacteroidetes can utilize yeast mannan through a selfish mechanism. Nature. 2015;517(7533):165–169. doi:10.1038/nature13995.
  • Coyne MJ, Bechon N, Matano LM, McEneany VL, Chatzidaki-Livanis M, LE C. A family of anti-Bacteroidales peptide toxins widespread in the human gut microbiota. Nat Commun. 2019;10(1):3460. doi:10.1038/s41467-019-11494-1.
  • Rosado CJ, Kondos S, Bull TE, Kuiper MJ, Law RH, Buckle AM. The MACPF/CDC family of pore-forming toxins. Cell Microbiol. 2008;10(9):1765–1774. doi:10.1111/j.1462-5822.2008.01191.x.
  • Chatzidaki-Livanis M, Coyne MJ, Comstock LE. An antimicrobial protein of the gut symbiont Bacteroides fragilis with a MACPF domain of host immune proteins. Mol Microbiol. 2014;94:1361–1374. doi:10.1111/mmi.12839.
  • Roelofs KG, Coyne MJ, Gentyala RR, Chatzidaki-Livanis M, Comstock LE. Bacteroidales Secreted Antimicrobial Proteins Target Surface Molecules Necessary for Gut Colonization and Mediate Competition In Vivo. mBio. 2016:7. doi:10.1128/mBio.01055-16.
  • Shumaker AM, Laclare McEneany V, Coyne MJ, Silver PA, Comstock LE. Identification of a Fifth Antibacterial Toxin Produced by a Single Bacteroides fragilis Strain. J Bacteriol. 2019:201. doi:10.1128/JB.00577-18.
  • McEneany VL, Coyne MJ, Chatzidaki-Livanis M, Comstock LE. Acquisition of MACPF domain-encoding genes is the main contributor to LPS glycan diversity in gut Bacteroides species. Isme J. 2018;12(12):2919–2928. doi:10.1038/s41396-018-0244-4.
  • Chatzidaki-Livanis M, Coyne MJ, Roelofs KG, Gentyala RR, Caldwell JM, Comstock LE. Gut Symbiont Bacteroides fragilis Secretes a Eukaryotic-Like Ubiquitin Protein That Mediates Intraspecies Antagonism. mBio. 2017:8. doi:10.1128/mBio.01902-17.
  • Coyne MJ, Comstock LE. Type VI Secretion Systems and the Gut Microbiota. Microbiol Spectr. 2019:7. doi:10.1128/microbiolspec.PSIB-0009-2018.
  • Veesler D, Cambillau C. A common evolutionary origin for tailed-bacteriophage functional modules and bacterial machineries. Microbiol Mol Biol Rev. 2011;75(3):423–433. doi:10.1128/MMBR.00014-11.
  • Coulthurst S. The Type VI secretion system: a versatile bacterial weapon. Microbiology. 2019;165(5):503–515. doi:10.1099/mic.0.000789.
  • Coyne MJ, Roelofs KG, Comstock LE. Type VI secretion systems of human gut Bacteroidales segregate into three genetic architectures, two of which are contained on mobile genetic elements. BMC Genomics. 2016;17(1):58. doi:10.1186/s12864-016-2377-z.
  • Coyne MJ, Zitomersky NL, McGuire AM, Earl AM, Comstock LE. Evidence of extensive DNA transfer between bacteroidales species within the human gut. mBio. 2014;5(3):e01305–14. doi:10.1128/mBio.01305-14.
  • Verster AJ, Ross BD, Radey MC, Bao Y, Goodman AL, Mougous JD. The Landscape of Type VI Secretion across Human Gut Microbiomes Reveals Its Role in Community Composition. Cell Host Microbe. 2017;22(3):e4. doi:10.1016/j.chom.2017.08.010.
  • Wexler AG, Bao Y, Whitney JC, Bobay LM, Xavier JB, Schofield WB. Human symbionts inject and neutralize antibacterial toxins to persist in the gut. Proc Natl Acad Sci U S A. 2016;113(13):3639–3644. doi:10.1073/pnas.1525637113.
  • Alteri CJ, Mobley HLT. The Versatile Type VI Secretion System. Microbiol Spectr. 2016:4. doi:10.1128/microbiolspec.VMBF-0026-2015.
  • Tang JY, Bullen NP, Ahmad S, Whitney JC. Diverse NADase effector families mediate interbacterial antagonism via the type VI secretion system. J Biol Chem. 2018;293(5):1504. doi:10.1074/jbc.RA117.000178.
  • Sibinelli-Sousa S, Hespanhol JT, Nicastro GG, Matsuyama BY, Mesnage S, Patel A. A Family of T6SS Antibacterial Effectors Related to l,d-Transpeptidases Targets the Peptidoglycan. Cell Rep. 2020;31(12):107813. doi:10.1016/j.celrep.2020.107813.
  • Houghteling PD, Walker WA. Why is initial bacterial colonization of the intestine important to infants’ and children’s health? J Pediatr Gastroenterol Nutr. 2015;60(3):294–307. doi:10.1097/MPG.0000000000000597.
  • Milani C, Duranti S, Bottacini F, Casey E, Turroni F, Mahony J. The First Microbial Colonizers of the Human Gut: composition, Activities, and Health Implications of the Infant Gut Microbiota. Microbiol Mol Biol Rev. 2017:81. doi:10.1128/MMBR.00036-17.
  • Fouhy F, Ross RP, Fitzgerald GF, Stanton C, Cotter PD. Composition of the early intestinal microbiota: knowledge, knowledge gaps and the use of high-throughput sequencing to address these gaps. Gut Microbes. 2012;3(3):203–220. doi:10.4161/gmic.20169.
  • Wang M, Li M, Wu S, Lebrilla CB, Chapkin RS, Ivanov I. Fecal microbiota composition of breast-fed infants is correlated with human milk oligosaccharides consumed. J Pediatr Gastroenterol Nutr. 2015;60(6):825–833. doi:10.1097/MPG.0000000000000752.
  • Backhed F, Roswall J, Peng Y, Feng Q, Jia H, Kovatcheva-Datchary P. Dynamics and Stabilization of the Human Gut Microbiome during the First Year of Life. Cell Host Microbe. 2015;17(5):690–703. doi:10.1016/j.chom.2015.04.004.
  • Rodriguez JM, Murphy K, Stanton C, Ross RP, Kober OI, Juge N. The composition of the gut microbiota throughout life, with an emphasis on early life. Microb Ecol Health Dis. 2015;26:26050. doi:10.3402/mehd.v26.26050.
  • Laursen MF, Bahl MI, Michaelsen KF, Licht TR. First Foods and Gut Microbes. Front Microbiol. 2017;8:356. doi:10.3389/fmicb.2017.00356.
  • Rinninella E, Cintoni M, Raoul P, Lopetuso LR, Scaldaferri F, Pulcini G. Food Components and Dietary Habits: keys for a Healthy Gut Microbiota Composition. Nutrients. 2019:11. doi:10.3390/nu11102393.
  • Hollister EB, Riehle K, Luna RA, Weidler EM, Rubio-Gonzales M, Mistretta TA. Structure and function of the healthy pre-adolescent pediatric gut microbiome. Microbiome. 2015;3(1):36. doi:10.1186/s40168-015-0101-x.
  • Ringel-Kulka T, Cheng J, Ringel Y, Salojarvi J, Carroll I, Palva A. Intestinal microbiota in healthy U.S. young children and adults–a high throughput microarray analysis. PLoS One. 2013;8(5):e64315. doi:10.1371/journal.pone.0064315.
  • Zhong H, Penders J, Shi Z, Ren H, Cai K, Fang C. Impact of early events and lifestyle on the gut microbiota and metabolic phenotypes in young school-age children. Microbiome. 2019;7(1):2. doi:10.1186/s40168-018-0608-z.
  • Kurilshikov A, Wijmenga C, Fu J, Zhernakova A. Host Genetics and Gut Microbiome: challenges and Perspectives. Trends Immunol. 2017;38(9):633–647. doi:10.1016/j.it.2017.06.003.
  • Ferrocino I, Di Cagno R, De Angelis M, Turroni S, Vannini L, Bancalari E. Fecal Microbiota in Healthy Subjects Following Omnivore, Vegetarian and Vegan Diets: culturable Populations and rRNA DGGE Profiling. PLoS One. 2015;10(6):e0128669. doi:10.1371/journal.pone.0128669.
  • Hayashi H, Sakamoto M, Benno Y. Fecal microbial diversity in a strict vegetarian as determined by molecular analysis and cultivation. Microbiol Immunol. 2002;46(12):819–831. doi:10.1111/j.1348-0421.2002.tb02769.x.
  • Singh RK, Chang HW, Yan D, Lee KM, Ucmak D, Wong K. Influence of diet on the gut microbiome and implications for human health. J Transl Med. 2017;15:73. doi:10.1186/s12967-017-1175-y.
  • Tomova A, Bukovsky I, Rembert E, Yonas W, Alwarith J, Barnard ND. The Effects of Vegetarian and Vegan Diets on Gut Microbiota. Front Nutr. 2019;6:47. doi:10.3389/fnut.2019.00047.
  • Voreades N, Kozil A, Weir TL. Diet and the development of the human intestinal microbiome. Front Microbiol. 2014;5:494. doi:10.3389/fmicb.2014.00494.
  • Conlon MA, Bird AR. The impact of diet and lifestyle on gut microbiota and human health. Nutrients. 2014;7(1):17–44. doi:10.3390/nu7010017.
  • Nakayama J, Heping Z, Lee YK. Asian gut Microbiome. Science Bulletin. 2017;62(12):816–817. doi:10.1016/j.scib.2017.04.001.
  • Pareek S, Kurakawa T, Das B, Motooka D, Nakaya S, Rongsen-Chandola T. Comparison of Japanese and Indian intestinal microbiota shows diet-dependent interaction between bacteria and fungi. NPJ Biofilms Microbiomes. 2019;5:37. doi:10.1038/s41522-019-0110-9.
  • Ishikawa E, Matsuki T, Kubota H, Makino H, Sakai T, Oishi K. Ethnic diversity of gut microbiota: species characterization of Bacteroides fragilis group and genus Bifidobacterium in healthy Belgian adults, and comparison with data from Japanese subjects. J Biosci Bioeng. 2013;116(2):265–270. doi:10.1016/j.jbiosc.2013.02.010.
  • Lee YK, Conway P, Pettersson S, Nair GB, Surono I, Egayanti Y. ILSI Southeast Asia Region conference proceedings: the gut, its microbes and health: relevance for Asia. Asia Pac J Clin Nutr. 2017;26:957–971. doi:10.6133/apjcn.112016.09.
  • Murphy EC, Morgelin M, Cooney JC, Frick IM. Interaction of Bacteroides fragilis and Bacteroides thetaiotaomicron with the kallikrein-kinin system. Microbiology. 2011;157(7):2094–2105. doi:10.1099/mic.0.046862-0.
  • Polk BF. Bacteroides fragilis subspecies in clinical isolates. Ann Intern Med. 1977;86(5):569–571. doi:10.7326/0003-4819-86-5-569.
  • Thadepalli H, Chuah SK, Qazi S, Thadepalli F, Gollapudi SV. Bacteroides fragilis-Induced Intra-Abdominal Abscess in an Experimental Model Treated with Telithromycin (HMR 3647). Chemotherapy. 2001;47(1):43–49. doi:10.1159/000048500.
  • Vaishnavi C. Translocation of gut flora and its role in sepsis. Indian J Med Microbiol. 2013;31(4):334–342. doi:10.4103/0255-0857.118870.
  • Archambaud C, Derre-Bobillot A, Lapaque N, Rigottier-Gois L, Serror P. Intestinal translocation of enterococci requires a threshold level of enterococcal overgrowth in the lumen. Sci Rep. 2019;9(1):8926. doi:10.1038/s41598-019-45441-3.
  • Desai MS, Seekatz AM, Koropatkin NM, Kamada N, Hickey CA, Wolter M. A Dietary Fiber-Deprived Gut Microbiota Degrades the Colonic Mucus Barrier and Enhances Pathogen Susceptibility. Cell. 2016;167(1339–53):e21. doi:10.1016/j.cell.2016.10.043.
  • Lobo LA, Jenkins AL, Jeffrey Smith C, Rocha ER. Expression of Bacteroides fragilis hemolysins in vivo and role of HlyBA in an intra-abdominal infection model. Microbiologyopen. 2013;2:326–337. doi:10.1002/mbo3.76.
  • Pickard JM, Zeng MY, Caruso R, Nunez G. Gut microbiota: role in pathogen colonization, immune responses, and inflammatory disease. Immunol Rev. 2017;279(1):70–89. doi:10.1111/imr.12567.
  • Sudhaharan S, Chavali P, Vemu L. Anaerobic brain abscess. Iran J Microbiol. 2016;8:120–124.
  • Surana NK, Kasper DL. The yin yang of bacterial polysaccharides: lessons learned from B. fragilis PSA. Immunol Rev. 2012;245:13–26. doi:10.1111/j.1600-065X.2011.01075.x.
  • Rodloff AC, Becker J, Blanchard DK, Klein TW, Hahn H, Friedman H. Inhibition of macrophage phagocytosis by Bacteroides fragilis in vivo and in vitro. Infect Immun. 1986;52(2):488–492. doi:10.1128/IAI.52.2.488-492.1986.
  • Cress BF, Englaender JA, He W, Kasper D, Linhardt RJ, Koffas MA. Masquerading microbial pathogens: capsular polysaccharides mimic host-tissue molecules. FEMS Microbiol Rev. 2014;38(4):660–697. doi:10.1111/1574-6976.12056.
  • Berezow AB, Ernst RK, Coats SR, Braham PH, Karimi-Naser LM, Darveau RP. The structurally similar, penta-acylated lipopolysaccharides of Porphyromonas gingivalis and Bacteroides elicit strikingly different innate immune responses. Microb Pathog. 2009;47(2):68–77. doi:10.1016/j.micpath.2009.04.015.
  • Jacobson AN, Choudhury BP, Fischbach MA. The Biosynthesis of Lipooligosaccharide from Bacteroides thetaiotaomicron. mBio. 2018:9. doi:10.1128/mBio.02289-17.
  • Cullen TW, Schofield WB, Barry NA, Putnam EE, Rundell EA, Trent MS. Gut microbiota. Antimicrobial peptide resistance mediates resilience of prominent gut commensals during inflammation. Science. 2015;347(6218):170–175. doi:10.1126/science.1260580.
  • Zhang W, Zhu B, Xu J, Liu Y, Qiu E, Li Z. Bacteroides fragilis Protects Against Antibiotic-Associated Diarrhea in Rats by Modulating Intestinal Defenses. Front Immunol. 2018;9:1040. doi:10.3389/fimmu.2018.01040.
  • Zamani S, Hesam Shariati S, Zali MR, Asadzadeh Aghdaei H, Sarabi Asiabar A, Bokaie S. Detection of enterotoxigenic Bacteroides fragilis in patients with ulcerative colitis. Gut Pathog. 2017;9(1):53. doi:10.1186/s13099-017-0202-0.
  • Valguarnera E, Wardenburg JB. Good Gone Bad: one Toxin Away From Disease for Bacteroides fragilis. J Mol Biol. 2020;432(4):765–785. doi:10.1016/j.jmb.2019.12.003.
  • Vu Nguyen T, Le Van P, Le Huy C, Weintraub A. Diarrhea caused by enterotoxigenic Bacteroides fragilis in children less than 5 years of age in Hanoi, Vietnam. Anaerobe. 2005;11(1–2):109–114. doi:10.1016/j.anaerobe.2004.10.004.
  • Ulger Toprak N, Rajendram D, Yagci A, Gharbia S, Shah HN, Gulluoglu BM. The distribution of the bft alleles among enterotoxigenic Bacteroides fragilis strains from stool specimens and extraintestinal sites. Anaerobe. 2006;12(2):71–74. doi:10.1016/j.anaerobe.2005.11.001.
  • Weikel CS, Grieco FD, Reuben J, Myers LL, Sack RB. Human colonic epithelial cells, HT29/C1, treated with crude Bacteroides fragilis enterotoxin dramatically alter their morphology. Infect Immun. 1992;60(2):321–327. doi:10.1128/iai.60.2.321-327.1992.
  • Potempa J, Pike RN. Corruption of innate immunity by bacterial proteases. J Innate Immun. 2009;1(2):70–87. doi:10.1159/000181144.
  • Thornton RF, Kagawa TF, O’Toole PW, Cooney JC. The dissemination of C10 cysteine protease genes in Bacteroides fragilis by mobile genetic elements. BMC Microbiol. 2010;10(1):122. doi:10.1186/1471-2180-10-122.
  • Braun V, Focareta T. Pore-forming bacterial protein hemolysins (cytolysins). Crit Rev Microbiol. 1991;18(2):115–158. doi:10.3109/10408419109113511.
  • Los FC, Randis TM, Aroian RV, Ratner AJ. Role of pore-forming toxins in bacterial infectious diseases. Microbiol Mol Biol Rev. 2013;77:173–207. doi:10.1128/MMBR.00052-12.
  • Los FC, Ratner AJ. Pore-forming toxins in bacterial infections:</L> targets for novel drugs. Ned Tijdschr Geneeskd. 2014;158:A6668.
  • Menestrina G, Dalla Serra M, Comai M, Coraiola M, Viero G, Werner S. Ion channels and bacterial infection: the case of β-barrel pore-forming protein toxins of Staphylococcus aureus. FEBS Lett. 2003;552(1):54–60. doi:10.1016/s0014-5793(03)00850-0.
  • Robertson KP, Smith CJ, Gough AM, Rocha ER. Characterization of Bacteroides fragilis hemolysins and regulation and synergistic interactions of HlyA and HlyB. Infect Immun. 2006;74(4):2304–2316. doi:10.1128/IAI.74.4.2304-2316.2006.
  • Zafar H, Saier MH Jr. Comparative genomics of transport proteins in seven Bacteroides species. PLoS One. 2018;13(12):e0208151. doi:10.1371/journal.pone.0208151.
  • Lauber F, Deme JC, Lea SM, Berks BC. Type 9 secretion system structures reveal a new protein transport mechanism. Nature. 2018;564(7734):77–82. doi:10.1038/s41586-018-0693-y.
  • Taguchi Y, Sato K, Yukitake H, Inoue T, Nakayama M, Naito M. Involvement of an Skp-Like Protein, PGN_0300, in the Type IX Secretion System of Porphyromonas gingivalis. Infect Immun. 2016;84(1):230–240. doi:10.1128/IAI.01308-15.
  • Lasica AM, Ksiazek M, Madej M, Potempa J. The Type IX Secretion System (T9SS): highlights and Recent Insights into Its Structure and Function. Front Cell Infect Microbiol. 2017;7:215. doi:10.3389/fcimb.2017.00215.
  • Kita D, Shibata S, Kikuchi Y, Kokubu E, Nakayama K, Saito A. Involvement of the Type IX Secretion System in Capnocytophaga ochracea Gliding Motility and Biofilm Formation. Appl Environ Microbiol. 2016;82(6):1756–1766. doi:10.1128/AEM.03452-15.
  • Koneru L, Ksiazek M, Waligorska I, Straczek A, Lukasik M, Madej M. Mirolysin, a LysargiNase from Tannerella forsythia, proteolytically inactivates the human cathelicidin, LL-37. Biol Chem. 2017;398(3):395–409. doi:10.1515/hsz-2016-0267.
  • Teixeira FL, Pauer H, Costa SB, Smith CJ, Domingues R, Rocha ER. Deletion of BmoR affects the expression of genes related to thiol/disulfide balance in Bacteroides fragilis. Sci Rep. 2018;8(1):14405. doi:10.1038/s41598-018-32880-7.
  • Grant SS, Hung DT. Persistent bacterial infections, antibiotic tolerance, and the oxidative stress response. Virulence. 2013;4(4):273–283. doi:10.4161/viru.23987.
  • Fraser T, Brown PD. Temperature and Oxidative Stress as Triggers for Virulence Gene Expression in Pathogenic Leptospira spp. Front Microbiol. 2017;8:783. doi:10.3389/fmicb.2017.00783.
  • Sund CJ, Rocha ER, Tzianabos AO, Wells WG, Gee JM, Reott MA. The Bacteroides fragilis transcriptome response to oxygen and H2O2: the role of OxyR and its effect on survival and virulence. Mol Microbiol. 2008;67(1):129–142. doi:10.1111/j.1365-2958.2007.06031.x.
  • Reott MA, Parker AC, Rocha ER, Smith CJ. Thioredoxins in redox maintenance and survival during oxidative stress of Bacteroides fragilis. J Bacteriol. 2009;191(10):3384–3391. doi:10.1128/JB.01665-08.
  • Comtois SL, Gidley MD, Kelly DJ. Role of the thioredoxin system and the thiol peroxidases Tpx and Bcp in mediating resistance to oxidative and nitrosative stress in Helicobacter pylori. Microbiology. 2003;149(1):121–129. doi:10.1099/mic.0.25896-0.
  • Nicholson SA, Smalley D, Smith CJ, Abratt VR. The recA operon: A novel stress response gene cluster in Bacteroides fragilis. Res Microbiol. 2014;165(4):290–299. doi:10.1016/j.resmic.2014.03.005.
  • Zitvogel L, Galluzzi L, Viaud S, Vetizou M, Daillere R, Merad M. Cancer and the gut microbiota: an unexpected link. Sci Transl Med. 2015;7(271):271ps1. doi:10.1126/scitranslmed.3010473.
  • Gopalakrishnan V, Helmink BA, Spencer CN, Reuben A, Wargo JA. The Influence of the Gut Microbiome on Cancer, Immunity, and Cancer Immunotherapy. Cancer Cell. 2018;33(4):570–580. doi:10.1016/j.ccell.2018.03.015.
  • Baffy G. Gut Microbiota and Cancer of the Host: colliding Interests. Adv Exp Med Biol. 2020;1219:93–107. doi:10.1007/978-3-030-34025-4_5.
  • Vivarelli S, Salemi R, Candido S, Falzone L, Santagati M, Stefani S. Gut Microbiota and Cancer: from Pathogenesis to Therapy. Cancers (Basel). 2019:11. doi:10.3390/cancers11010038.
  • Cervelli M, Amendola R, Polticelli F, Mariottini P. Spermine oxidase: ten years after. Amino Acids. 2012;42(2–3):441–450. doi:10.1007/s00726-011-1014-z.
  • Murray Stewart T, Dunston TT, Woster PM, Casero RA Jr. Polyamine catabolism and oxidative damage. J Biol Chem. 2018;293(48):18736–18745. doi:10.1074/jbc.TM118.003337.
  • Liou GY, Storz P. Reactive oxygen species in cancer. Free Radic Res. 2010;44(5):479–496. doi:10.3109/10715761003667554.
  • Snezhkina AV, Krasnov GS, Lipatova AV, Sadritdinova AF, Kardymon OL, Fedorova MS. The Dysregulation of Polyamine Metabolism in Colorectal Cancer Is Associated with Overexpression of c-Myc and C/EBPbeta rather than Enterotoxigenic Bacteroides fragilis Infection. Oxid Med Cell Longev. 2016;2016:2353560. doi:10.1155/2016/2353560.
  • Zamani S, Taslimi R, Sarabi A, Jasemi S, Sechi LA, Feizabadi MM. Enterotoxigenic Bacteroides fragilis: A Possible Etiological Candidate for Bacterially-Induced Colorectal Precancerous and Cancerous Lesions. Front Cell Infect Microbiol. 2019;9:449. doi:10.3389/fcimb.2019.00449.
  • Moncrief JS, Obiso R Jr., Barroso LA, Kling JJ, Wright RL, Van Tassell RL. The enterotoxin of Bacteroides fragilis is a metalloprotease. Infect Immun. 1995;63(1):175–181. doi:10.1128/IAI.63.1.175-181.1995.
  • Wu S, Rhee KJ, Zhang M, Franco A, Sears CL. Bacteroides fragilis toxin stimulates intestinal epithelial cell shedding and gamma-secretase-dependent E-cadherin cleavage. J Cell Sci. 2007;120:1944–1952. doi:10.1242/jcs.03455.
  • Wu S, Morin PJ, Maouyo D, Sears CL. Bacteroides fragilis enterotoxin induces c-Myc expression and cellular proliferation. Gastroenterology. 2003;124(2):392–400. doi:10.1053/gast.2003.50047.
  • Kim JM, Cho SJ, Oh YK, Jung HY, Kim YJ, Kim N. Nuclear factor-kappa B activation pathway in intestinal epithelial cells is a major regulator of chemokine gene expression and neutrophil migration induced by Bacteroides fragilis enterotoxin. Clin Exp Immunol. 2002;130(1):59–66. doi:10.1046/j.1365-2249.2002.01921.x.
  • Kim JM, Jung HY, Lee JY, Youn J, Lee CH, Kim KH. Mitogen-activated protein kinase and activator protein-1 dependent signals are essential for Bacteroides fragilis enterotoxin- induced enteritis. Eur J Immunol. 2005;35(9):2648–2657. doi:10.1002/eji.200526321.
  • Yuan A, Chen JJ, Yao PL, Yang PC. The role of interleukin-8 in cancer cells and microenvironment interaction. Front Biosci. 2005;10:853–865. doi:10.2741/1579.
  • Fearon ER, Vogelstein B. A genetic model for colorectal tumorigenesis. Cell. 1990;61(5):759–767. doi:10.1016/0092-8674(90)90186-i.
  • Giardiello FM, Krush AJ, Petersen GM, Booker SV, Kerr M, Tong LL. Phenotypic variability of familial adenomatous polyposis in 11 unrelated families with identical APC gene mutation. Gastroenterology. 1994;106(6):1542–1547. doi:10.1016/0016-5085(94)90408-1.
  • Dejea CM, Fathi P, Craig JM, Boleij A, Taddese R, Geis AL. Patients with familial adenomatous polyposis harbor colonic biofilms containing tumorigenic bacteria. Science. 2018;359(6375):592–597. doi:10.1126/science.aah3648.
  • Toprak NU, Yagci A, Gulluoglu BM, Akin ML, Demirkalem P, Celenk T. A possible role of Bacteroides fragilis enterotoxin in the aetiology of colorectal cancer. Clin Microbiol Infect. 2006;12(8):782–786. doi:10.1111/j.1469-0691.2006.01494.x.
  • Haghi F, Goli E, Mirzaei B, Zeighami H. The association between fecal enterotoxigenic B. fragilis with colorectal cancer. BMC Cancer. 2019;19(1):879. doi:10.1186/s12885-019-6115-1.
  • Fernandez MF, Reina-Perez I, Astorga JM, Rodriguez-Carrillo A, Plaza-Diaz J, Fontana L. Breast Cancer and Its Relationship with the Microbiota. Int J Environ Res Public Health. 2018:15. doi:10.3390/ijerph15081747.
  • Buchta Rosean C, Bostic RR, Ferey JCM, Feng TY, Azar FN, Tung KS. Preexisting Commensal Dysbiosis Is a Host-Intrinsic Regulator of Tissue Inflammation and Tumor Cell Dissemination in Hormone Receptor-Positive Breast Cancer. Cancer Res. 2019;79(14):3662. doi:10.1158/0008-5472.CAN-18-3464.
  • Burstein HJ, Cirrincione CT, Barry WT, Chew HK, Tolaney SM, Lake DE. Endocrine therapy with or without inhibition of epidermal growth factor receptor and human epidermal growth factor receptor 2: a randomized, double-blind, placebo-controlled phase III trial of fulvestrant with or without lapatinib for postmenopausal women with hormone receptor- positive advanced breast cancer-CALGB 40302 (Alliance). J Clin Oncol. 2014;32:3959–3966. doi:10.1200/JCO.2014.56.7941.
  • Miko E, Kovacs T, Sebo E, Toth J, Csonka T, Ujlaki G. Microbiome-Microbial Metabolome-Cancer Cell Interactions in Breast Cancer-Familiar, but Unexplored Cells. 2019:8. 10.3390/cells8040293.
  • Kirkup BM, McKee A, Makin KA, Paveley J, Caim S, Alcon-Giner C. Perturbation of the gut microbiota by antibiotics results in accelerated breast tumour growth and metabolic dysregulation. bioRxiv. 2019:553602. doi:10.1101/553602.
  • Campbell MJ, McCune E, Johnson B, O’Meara T, Heditsian D, Brain S. Abstract 2830: breast cancer and the human oral and gut microbiomes. Cancer Res. 2019;79:2830. doi:10.1158/1538-7445.AM2019-2830.
  • Parida S, Wu S, Muniraj N, Siddharth S, Nagaligam A, Sears CL. Abstract PR02: bacteroides fragilis toxin induces epithelial-to-mesenchymal transition and stem-like phenotype in breast epithelial cells and concomitantly activates Notch1 and βcatenin axes. Cancer Immunology Research. 2020;8:PR02–PR. doi:10.1158/1538-7445.MVC2020-PR06.
  • Evans JM, Morris LS, Marchesi JR. The gut microbiome: the role of a virtual organ in the endocrinology of the host. J Endocrinol. 2013;218(3):R37–47. doi:10.1530/JOE-13-0131.
  • Wu HJ, Wu E. The role of gut microbiota in immune homeostasis and autoimmunity. Gut Microbes. 2012;3(1):4–14. doi:10.4161/gmic.19320.
  • Xu H, Liu M, Cao J, Li X, Fan D, Xia Y. The Dynamic Interplay between the Gut Microbiota and Autoimmune Diseases. J Immunol Res. 2019;2019:7546047. doi:10.1155/2019/7546047.
  • Hebbandi Nanjundappa R, Ronchi F, Wang J, Clemente-Casares X, Yamanouchi J, Sokke UC. A Gut Microbial Mimic that Hijacks Diabetogenic Autoreactivity to Suppress Colitis. Cell. 2017;171(3):e17. doi:10.1016/j.cell.2017.09.022.
  • Gianchecchi E, Fierabracci A. Recent Advances on Microbiota Involvement in the Pathogenesis of Autoimmunity. Int J Mol Sci. 2019:20. doi:10.3390/ijms20020283.
  • Patrick S, Blakely GW. Crossing the eukaryote-prokaryote divide: A ubiquitin homolog in the human commensal bacterium Bacteroides fragilis. Mob Genet Elements. 2012;2(3):149–151. doi:10.4161/mge.21191.
  • Weil R. Does antigen masking by ubiquitin chains protect from the development of autoimmune diseases? Front Immunol. 2014;5:262. doi:10.3389/fimmu.2014.00262.
  • Stewart L, DME J, Blakely G, Patrick S. Antigenic mimicry of ubiquitin by the gut bacterium Bacteroides fragilis: a potential link with autoimmune disease. Clin Exp Immunol. 2018;194(2):153–165. doi:10.1111/cei.13195.
  • Bracamonte-Baran W, Cihakova D. Cardiac Autoimmunity: myocarditis. Adv Exp Med Biol. 2017;1003:187–221. doi:10.1007/978-3-319-57613-8_10.
  • Krejci J, Mlejnek D, Sochorova D, Nemec P. Inflammatory Cardiomyopathy: A Current View on the Pathophysiology, Diagnosis, and Treatment. Biomed Res Int. 2016;2016:4087632. doi:10.1155/2016/4087632.
  • Gil-Cruz C, Perez-Shibayama C, De Martin A, Ronchi F, van der Borght K, Niederer R. Microbiota-derived peptide mimics drive lethal inflammatory cardiomyopathy. Science. 2019;366(6467):881–886. doi:10.1126/science.aav3487.
  • Chatzidaki-Livanis M, Weinacht KG, Comstock LE. Trans locus inhibitors limit concomitant polysaccharide synthesis in the human gut symbiont Bacteroides fragilis. Proc Natl Acad Sci U S A. 2010;107(26):11976–11980. doi:10.1073/pnas.1005039107.
  • Troy EB, Kasper DL. Beneficial effects of Bacteroides fragilis polysaccharides on the immune system. Front Biosci (Landmark Ed). 2010;15(1):25–34. doi:10.2741/3603.
  • Sommese L, Pagliuca C, Avallone B, Ippolito R, Casamassimi A, Costa V. Evidence of Bacteroides fragilis protection from Bartonella henselae-induced damage. PLoS One. 2012;7:e49653. doi:10.1371/journal.pone.0049653.
  • Ramakrishna C, Kujawski M, Chu H, Li L, Mazmanian SK, Cantin EM. Bacteroides fragilis polysaccharide A induces IL-10 secreting B and T cells that prevent viral encephalitis. Nat Commun. 2019;10(1):2153. doi:10.1038/s41467-019-09884-6.
  • Shen Y, Giardino Torchia ML, Lawson GW, Karp CL, Ashwell JD, Mazmanian SK. Outer membrane vesicles of a human commensal mediate immune regulation and disease protection. Cell Host Microbe. 2012;12(4):509–520. doi:10.1016/j.chom.2012.08.004.
  • Mogensen TH. Pathogen recognition and inflammatory signaling in innate immune defenses. Clin Microbiol Rev Table of Contents. 2009;22:240–273. doi:10.1128/CMR.00046-08.
  • Leifer CA, Medvedev AE. Molecular mechanisms of regulation of Toll-like receptor signaling. J Leukoc Biol. 2016;100(5):927–941. doi:10.1189/jlb.2MR0316-117RR.
  • Kawai T, Akira S. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat Immunol. 2010;11(5):373–384. doi:10.1038/ni.1863.
  • Round JL, Lee SM, Li J, Tran G, Jabri B, Chatila TA. The Toll-like receptor 2 pathway establishes colonization by a commensal of the human microbiota. Science. 2011;332(6032):974–977. doi:10.1126/science.1206095.
  • Troy EB, Kasper DL. Beneficial effects of Bacteroides fragilis polysaccharides on the immune system. Front Biosci (Landmark Ed). 2010;15(1):25–34. doi:10.2741/3603.
  • Cohen-Poradosu R, McLoughlin RM, Lee JC, Kasper DL. Bacteroides fragilis-stimulated interleukin-10 contains expanding disease. J Infect Dis. 2011;204(3):363–371. doi:10.1093/infdis/jir277.
  • Kennedy EA, King KY, Baldridge MT. Mouse Microbiota Models: comparing Germ-Free Mice and Antibiotics Treatment as Tools for Modifying Gut Bacteria. Front Physiol. 2018;9:1534. doi:10.3389/fphys.2018.01534.
  • Pfeiffer JK, Sonnenburg JL. The intestinal microbiota and viral susceptibility. Front Microbiol. 2011;2:92. doi:10.3389/fmicb.2011.00092.
  • McCormick AL, Mocarski JES. . Viral modulation of the host response to infection. In: Arvin A, Campadelli-Fiume G, Mocarski E, Moore PS, Roizman B, Whitley R, editors. Human Herpesviruses: biology, Therapy, and Immunoprophylaxis. Cambridge; 2007.
  • Mancini M, Vidal SM. Insights into the pathogenesis of herpes simplex encephalitis from mouse models. Mamm Genome. 2018;29(7–8):425–445. doi:10.1007/s00335-018-9772-5.
  • Shimizu J, Kubota T, Takada E, Takai K, Fujiwara N, Arimitsu N. Propionate- producing bacteria in the intestine may associate with skewed responses of IL10-producing regulatory T cells in patients with relapsing polychondritis. PLoS One. 2018;13(9):e0203657. doi:10.1371/journal.pone.0203657.
  • Vinolo MA, Rodrigues HG, Nachbar RT, Curi R. Regulation of inflammation by short chain fatty acids. Nutrients. 2011;3(10):858–876. doi:10.3390/nu3100858.
  • Cruz-Bravo RK, Guevara-Gonzalez RG, Ramos-Gomez M, Oomah BD, Wiersma P, Campos-Vega R. The fermented non-digestible fraction of common bean (Phaseolus vulgaris L.) triggers cell cycle arrest and apoptosis in human colon adenocarcinoma cells. Genes Nutr. 2014;9:359. doi:10.1007/s12263-013-0359-1.
  • Nagpal R, Wang S, Ahmadi S, Hayes J, Gagliano J, Subashchandrabose S. Human- origin probiotic cocktail increases short-chain fatty acid production via modulation of mice and human gut microbiome. Sci Rep. 2018;8(1):12649. doi:10.1038/s41598-018-30114-4.
  • Walther B, Karl JP, Booth SL, Boyaval P. Menaquinones, bacteria, and the food supply: the relevance of dairy and fermented food products to vitamin K requirements. Adv Nutr. 2013;4:463–473. doi:10.3945/an.113.003855.
  • Fujita Y, Iki M, Tamaki J, Kouda K, Yura A, Kadowaki E. Association between vitamin K intake from fermented soybeans, natto, and bone mineral density in elderly Japanese men: the Fujiwara-kyo Osteoporosis Risk in Men (FORMEN) study. Osteoporos Int. 2012;23(2):705–714. doi:10.1007/s00198-011-1594-1.
  • Johnson CH, Dejea CM, Edler D, Hoang LT, Santidrian AF, Felding BH. Metabolism links bacterial biofilms and colon carcinogenesis. Cell Metab. 2015;21(6):891–897. doi:10.1016/j.cmet.2015.04.011.
  • Ulsemer P, Toutounian K, Kressel G, Goletz C, Schmidt J, Karsten U. Impact of oral consumption of heat-treated Bacteroides xylanisolvens DSM 23964 on the level of natural TFalpha-specific antibodies in human adults. Benef Microbes. 2016;7:485–500. doi:10.3920/BM2015.0143.
  • Ulsemer P, Henderson G, Toutounian K, Loffler A, Schmidt J, Karsten U. Specific humoral immune response to the Thomsen-Friedenreich tumor antigen (CD176) in mice after vaccination with the commensal bacterium Bacteroides ovatus D-6. Cancer Immunol Immunother. 2013;62(5):875–887. doi:10.1007/s00262-013-1394-x.