3,729
Views
18
CrossRef citations to date
0
Altmetric
Research Paper

Metabolic impact of persistent organic pollutants on gut microbiota

ORCID Icon, , ORCID Icon, ORCID Icon, , , , & ORCID Icon show all
Article: 1848209 | Received 24 Aug 2020, Accepted 25 Oct 2020, Published online: 09 Dec 2020

References

  • Lim J-E, Nam C, Yang J, Rha KH, Lim K-M, Jee SH. Serum persistent organic pollutants (POPs) and prostate cancer risk: A case-cohort study. International Journal of Hygiene and Environmental Health. 2017;220(5):849–856. doi:10.1016/j.ijheh.2017.03.014.
  • Koual M, German CS, Anne SB, Celine T, Yael KA, Nathalie DH, Charlotte N, Helene B, Myriam D, Fabrice L, et al. Associations between persistent organic pollutants and risk of breast cancer metastasis. Environ Int. 2019;132:105028. doi:10.1016/j.envint.2019.105028.
  • Vafeiadi M, Vrijheid M, Fthenou E, Chalkiadaki G, Rantakokko P, Kiviranta H, Kyrtopoulos SA, Chatzi L, Kogevinas M. Persistent organic pollutants exposure during pregnancy, maternal gestational Weight gain, and birth outcomes in the mother-child cohort in Crete, Greece (RHEA study). Environ Int. 2014;64:116–123. doi:10.1016/j.envint.2013.12.015.
  • Ren AG, Qiu XH, Jin L, Ma J, Li ZW, Zhang L, Zhu HP, Finnell RH, Zhu T. Association of selected persistent organic pollutants in the placenta with the risk of neural tube defects. Proc Natl Acad Sci U S A. 2011;108:12770–12775. doi:10.1073/pnas.1105209108.
  • Gascon M, Morales E, Sunyer J, Vrijheid M. Effects of persistent organic pollutants on the developing respiratory and immune systems: A systematic review. Environ Int. 2013;52:51–65. doi:10.1016/j.envint.2012.11.005.
  • Damstra T. Potential effects of certain persistent organic pollutants and endocrine disrupting chemicals on the health of children. J Toxicol Clin Toxicol. 2002;40:457–465. doi:10.1081/clt-120006748.
  • Vested A, Giwercman A, Bonde JP, Toft G. Persistent organic pollutants and male reproductive health. Asian J Androl. 2014;16:71–80. doi:10.4103/1008-682x.122345.
  • Magliano DJ, Loh VHY, Harding JL, Botton J, Shaw JE. Persistent organic pollutants and diabetes: A review of the epidemiological evidence. Diabetes Metab. 2014;40:1–14. doi:10.1016/j.diabet.2013.09.006.
  • Lee DH, Porta M, Jacobs DR, Vandenberg LN. Chlorinated persistent organic pollutants, obesity, and type 2 diabetes. Endocr Rev. 2014;35:557–601. doi:10.1210/er.2013-1084.
  • Jin YX, Wu SS, Zeng ZY, Fu ZW. Effects of environmental pollutants on gut microbiota. Environmental Pollution. 2017;222:1–9. doi:10.1016/j.envpol.2016.11.045.
  • National academies of sciences, E. & Medicine. Environmental chemicals, the human microbiome, and health risk: a research strategy. The National Academies Press; 2018. https://doi.org/10.17226/24960
  • Claus SP, Guillou H, Ellero-Simatos S. The gut microbiota: a major player in the toxicity of environmental pollutants? NPJ Biofilms Microbi. 2016;2:17001. doi:10.1038/npjbiofilms.2016.3.
  • Zhang LM, Nichols RG, Correll J, Murray IA, Tanaka N, Smith PB, Hubbard TD, Sebastian A, Albert I, Hatzakis E, et al. Persistent organic pollutants modify gut microbiota-host metabolic homeostasis in mice through aryl hydrocarbon receptor activation. Environ Health Perspect. 2015;123:679–688. doi:10.1289/ehp.1409055.
  • Rooks MG, Garrett WS. Gut microbiota, metabolites and host immunity. Nat Rev Immunol. 2016;16:341–352. doi:10.1038/nri.2016.42.
  • Belkaid Y, Hand TW. Role of the microbiota in immunity and inflammation. Cell. 2014;157:121–141. doi:10.1016/j.cell.2014.03.011.
  • Tilg H, Moschen AR. Microbiota and diabetes: an evolving relationship. Gut. 2014;63:1513–1521. doi:10.1136/gutjnl-2014-306928.
  • Nicholson JK, Holmes E, Kinross J, Burcelin R, Gibson G, Jia W, Pettersson S. Host-gut microbiota metabolic interactions. Sci. 2012;336:1262–1267. doi:10.1126/science.1223813.
  • Snedeker SM, Hay AG. Do interactions between gut ecology and environmental chemicals contribute to obesity and diabetes?. Environ Health Perspect. 2012;120:332–339. doi:10.1289/ehp.1104204.
  • Zhang LM, Hatzakis E, Nichols RG, Hao RX, Correll J, Smith PB, Chiaro CR, Perdew GH, Patterson AD. Metabolomics reveals that aryl hydrocarbon receptor activation by environmental chemicals induces systemic metabolic dysfunction in mice. Environ Sci. 2015;49:8067–8077. doi:10.1021/acs.est.5b01389.
  • Nichols RG, Zhang JT, Cai JW, Murray IA, Koo I, Smith PB, Perdew GH, Patterson AD. Metatranscriptomic analysis of the mouse gut microbiome response to the persistent organic pollutant 2,3,7,8-tetrachlorodibenzofuran. Metabolites. 2020;10:1. doi:10.3390/metabo10010001.
  • Vital M, Howe AC, Tiedje JM. Revealing the bacterial butyrate synthesis pathways by analyzing (meta) genomic data. Mbio. 2014;5:e00889. doi:10.1128/mBio.00889-14.
  • Sprusansky O, Stirrett K, Skinner D, Denoya C, Westpheling J. The bkdR gene of Streptomyces coelicolor is required for morphogenesis and antibiotic production and encodes a transcriptional regulator of a branched-chain amino acid dehydrogenase complex. J Bacteriol. 2005;187:664–671. doi:10.1128/jb.187.2.664-671.2005.
  • Kim KS, Pelton JG, Inwood WB, Andersen U, Kustu S, Wemmer DE. The rut pathway for pyrimidine degradation: novel chemistry and toxicity problems. J Bacteriol. 2010;192:4089–4102. doi:10.1128/jb.00201-10.
  • Setlow B, Sun DX, Setlow P. Interaction between DNA and alpha/beta-type small, acid-soluble spore protein - A new class of DNA-binding protein. J Bacteriol. 1992;174:2312–2322. doi:10.1128/jb.174.7.2312-2322.1992.
  • Miller SI. Antibiotic resistance and regulation of the gram-negative bacterial outer membrane barrier by host innate immune molecules. Mbio. 2016;7:e01541. doi:10.1128/mBio.01541-16.
  • Silhavy TJ, Kahne D, Walker S. The bacterial cell envelope. Cold Spring Harb Perspect Biol. 2010:2. doi:10.1101/cshperspect.a000414.
  • Sun LL, Xie C, Wang G, Wu Y, Wu Q, Wang XM, Liu J, Deng YY, Xia JL, Chen B, et al. Gut microbiota and intestinal FXR mediate the clinical benefits of metformin. Nat Med. 2018;24:1919–1929. doi:10.1038/s41591-018-0222-4.
  • Maier L, Pruteanu M, Kuhn M, Zeller G, Telzerow A, Anderson EE, Brochado AR, Fernandez KC, Dose H, Mori H, et al. Extensive impact of non-antibiotic drugs on human gut bacteria. Nature. 2018;555:623–628. doi:10.1038/nature25979.
  • Choi JJ, Eum SY, Rampersaud E, Daunert S, Abreu MT, Toborek M. Exercise attenuates PCB-induced changes in the mouse gut microbiome. Environ Health Perspect. 2013;121:725–730. doi:10.1289/ehp.1306534.
  • Mimura J, Fujii-Kuriyama Y. Functional role of AhR in the expression of toxic effects by TCDD. BBA-Gen Subj. 2003;1619:263–268. doi:10.1016/s0304-4165(02)00485-3.
  • Ovando BJ, Ellison CA, Vezina CM, Olson JR. Toxicogenomic analysis of exposure to TCDD, PCB126 and PCB153: identification of genomic biomarkers of exposure to AhR ligands. Bmc Genomics. 2010;11:583. doi:10.1186/1471-2164-11-583.
  • Maurice CF, Haiser HJ, Turnbaugh PJ. Xenobiotics shape the physiology and gene expression of the active human gut microbiome. Cell. 2013;152:39–50. doi:10.1016/j.cell.2012.10.052.
  • Tian Y, Cai JW, Gui W, Nichols RG, Koo I, Zhang JT, Anitha M, Patterson AD. Berberine directly affects the gut microbiota to promote intestinal farnesoid X receptor activation. Drug Metab Dispos. 2019;47:86–93. doi:10.1124/dmd.118.083691.
  • Murínová S, Dercová K. Response mechanisms of bacterial degraders to environmental contaminants on the level of cell walls and cytoplasmic membrane. Int J Microbiol. 2014;2014:873081. doi:10.1155/2014/873081.
  • Denich TJ, Beaudette LA, Lee H, Trevors JT. Effect of selected environmental and physico-chemical factors on bacterial cytoplasmic membranes. J Microbiol Methods. 2003;52:149–182. doi:10.1016/s0167-7012(02)00155-0.
  • Hoffman JB, Flythe MD, Hennig B. Environmental pollutant-mediated disruption of gut microbial metabolism of the prebiotic inulin. Anaerobe. 2019;55:96–102. doi:10.1016/j.anaerobe.2018.11.008.
  • Venegas DP, De la Fuente MK, Landskron G, Gonzalez MJ, Quera R, Dijkstra G, Harmsen HJM, Faber KN, Hermoso MA. Short chain fatty acids (SCFAs)-mediated gut epithelial and immune regulation and its relevance for inflammatory bowel diseases. Front Immunol. 2019:10. doi:10.3389/fimmu.2019.00277.
  • Pugsley AP, Schwartz M. Export and secretion of proteins by bacteria. Fems Microbiol Lett. 1985;32:3–38. doi:10.1016/0378-1097(85)90024-2.
  • Kostakioti M, Newman CL, Thanassi DG, Stathopoulos C. Mechanisms of protein export across the bacterial outer membrane. J Bacteriol. 2005;187:4306–4314. doi:10.1128/jb.187.13.4306-4314.2005.
  • Freudl R. Leaving home ain’t easy: protein export systems in gram-positive bacteria. Res Microbiol. 2013;164:664–674. doi:10.1016/j.resmic.2013.03.014.
  • Parsons JB, Rock CO. Is bacterial fatty acid synthesis a valid target for antibacterial drug discovery? Curr Opin Microbiol. 2011;14:544–549. doi:10.1016/j.mib.2011.07.029.
  • Nilsen H, Krokan HE. Base excision repair in a network of defence and tolerance. Carcinogenesis. 2001;22:987–998. doi:10.1093/carcin/22.7.987.
  • Zhang WS, Sargis RM, Volden PA, Carmean CM, Sun XJ, Brady MJ. PCB 126 and other dioxin-like PCBs specifically suppress hepatic PEPCK expression via the Aryl hydrocarbon receptor. Plos One. 2012;7:e37103. doi:10.1371/journal.pone.0037103.
  • Gadupudi GS, Klaren WD, Olivier AK, Klingelhutz AJ, Robertson LW. PCB126-induced disruption in gluconeogenesis and fatty acid oxidation precedes fatty liver in male rats. Toxicol Sci. 2016;149:98–110. doi:10.1093/toxsci/kfv215.
  • Fischer LJ, Seegal RF, Ganey PE, Pessah IN, Kodavanti PRS. Symposium overview: toxicity of non-coplanar PCBs. Toxicol Sci. 1998;41:49–61.
  • Totland C, Nerdal W, Steinkopf S. Effects and location of coplanar and noncoplanar PCB in a lipid bilayer: a solid-state NMR study. Environ Sci Technol. 2016;50:8290–8295. doi:10.1021/acs.est.6b01723.
  • Tan YS, Chen CH, Lawrence D, Carpenter DO. Ortho-substituted PCBs kill cells by altering membrane structure. Toxicol Sci. 2004;80:54–59. doi:10.1093/toxsci/kfh119.
  • Wojcik A, Bieniasz A, Wydro P, Broniatowski M. The effect of chlorination degree and substitution pattern on the interactions of polychlorinated biphenyls with model bacterial membranes. BBA-Biomembranes. 2019;1861:1057–1068. doi:10.1016/j.bbamem.2019.03.009.
  • Cai JW, Nichols RG, Koo I, Kalikow ZA, Zhang LM, Tian Y, Zhang JT, Smith PB, Patterson AD. Multiplatform physiologic and metabolic phenotyping reveals microbial toxicity. Msystems. 2018;3:e00123. doi:10.1128/mSystems.00123-18.
  • Xu WX, Wu JF, An YP, Xiao CN, Hao FH, Liu HB, Wang YL, Tang HR. Streptozotocin-Induced dynamic metabonomic changes in rat biofluids. J Proteome Res. 2012;11:3423–3435. doi:10.1021/pr300280t.
  • Tsugawa H, Cajka T, Kind T, Ma Y, Higgins B, Ikeda K, Kanazawa M, VanderGhenst J, Fiehn O, Arita M, et al. MS-DIAL: data-independent MS/MS deconvolution for comprehensive metabolome analysis. Nat Methods. 2015;12:523–526. doi:10.1038/nmeth.3393.
  • Barupal DK, Haldiya PK, Wohlgemuth G, Kind T, Kothari SL, Pinkerton KE, Fiehn O. MetaMapp: mapping and visualizing metabolomic data by integrating information from biochemical pathways and chemical and mass spectral similarity. BMC Bioinform. 2012;13:99. doi:10.1186/1471-2105-13-99.
  • Allman EL, Painter HJ, Samra J, Carrasquilla M, Llinas M. Metabolomic profiling of the malaria box reveals antimalarial target pathways. Antimicrob Agents Chemother. 2016;60:6635–6649. doi:10.1128/aac.01224-16.
  • Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 2011;17:10–12.
  • Kopylova E, Noe L, Touzet H. SortMeRNA: fast and accurate filtering of ribosomal RNAs in metatranscriptomic data. Bioinformatics. 2012;28:3211–3217. doi:10.1093/bioinformatics/bts611.
  • Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glockner FO. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2013;41:D590–D596. doi:10.1093/nar/gks1219.
  • Kim JW, Kim MS, Koh AY, Xie Y, Zhan XW. FMAP: functional mapping and analysis pipeline for metagenomics and metatranscriptomics studies. BMC Bioinform. 2016;17:420. doi:10.1186/s12859-016-1278-0.
  • Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using DIAMOND. Nat Methods. 2015;12:59–60. doi:10.1038/nmeth.3176.
  • Chong J, Liu P, Zhou GY, Xia JG. Using MICROBIOMEANALYST for comprehensive statistical, functional, and meta-analysis of microbiome data. Nat Protoc. 2020;15:799–821. doi:10.1038/s41596-019-0264-1.
  • Helmecke J, Schomburg D, Neumann-Schaal M. MetaboMAPS: pathway sharing and multi-omics data visualization in metabolic context. F1000Research 2020;9:288.
  • Tian Y, Gui W, Koo I, Smith PB, Allman EL, Nichols RG, Rimal B, Cai JW, Liu Q, Patterson AD. The microbiome modulating activity of bile acids. Gut Microbes. 2020;11. doi:10.1080/19490976.2020.1732268.
  • Tian Y, Nichols RG, Roy P, Gui W, Smith PB, Zhang JT, Lin YD, Weaver V, Cai JW, Patterson AD, et al. Prebiotic effects of white button mushroom (Agaricus bisporus) feeding on succinate and intestinal gluconeogenesis in C57BL/6 mice. J Funct Foods. 2018;45:223–232. doi:10.1016/j.jff.2018.04.008.
  • Kozich JJ, Westcott SL, Baxter NT, Highlander SK, Schloss PD. Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina sequencing platform. Appl Environ Microbiol. 2013;79:5112–5120. doi:10.1128/aem.01043-13.