5,650
Views
22
CrossRef citations to date
0
Altmetric
Research Paper

Completion of the gut microbial epi-bile acid pathway

, ORCID Icon, , , & ORCID Icon
Article: 1907271 | Received 15 Nov 2020, Accepted 12 Mar 2021, Published online: 03 May 2021

References

  • Ridlon JM, Kang D-J, Hylemon PB. Bile salt biotransformations by human intestinal bacteria. J Lipid Res 2006;47(2):241–20. doi:10.1194/jlr.R500013-JLR200.
  • Vlahcevic ZR, Heuman DM, Hylemon PB. Physiology and pathophysiology of enterohepatic circulation of bile acids. Zakim D, Boyer T, editors. Hepatology: a textbook of liver disease. Philadelphia, Pennsylvania, USA:Saunders; 1996. 376–417.
  • Dawson PA, Karpen SJ. Intestinal transport and metabolism of bile acids. J Lipid Res 2015;56(6):1085–1099. doi:10.1194/jlr.R054114.
  • Jones BV, Begley M, Hill C, Gahan CGM, Marchesi JR. Functional and comparative metagenomic analysis of bile salt hydrolase activity in the human gut microbiome. Proc Natl Acad Sci U S A 2008;105(36):13580–13585. doi:10.1073/pnas.0804437105.
  • Ridlon JM, Harris SC, Bhowmik S, Kang DJ, Hylemon PB. Consequences of bile salt biotransformations by intestinal bacteria. Gut Microbes 2016;7(1):22–39. doi:10.1080/19490976.2015.1127483.
  • Watanabe M, Fukiya S, Yokota A. Comprehensive evaluation of the bactericidal activities of free bile acids in the large intestine of humans and rodents. J Lipid Res 2017;58(6):1143–1152. doi:10.1194/jlr.M075143.
  • Bernstein C, Holubec H, Bhattacharyya AK, Nguyen H, Payne CM, Zaitlin B, Bernstein H. Carcinogenicity of deoxycholate, a secondary bile acid. Arch Toxicol 2011;85(8):863–871. doi:10.1007/s00204-011-0648-7.
  • Yoshimoto S, Loo TM, Atarashi K, Kanda H, Sato S, Oyadomari S, Iwakura Y, Oshima K, Morita H, Hattori M, et al. Obesity-induced gut microbial metabolite promotes liver cancer through senescence secretome. Nature 2013;499(7456):97–101. doi:10.1038/nature12347.
  • Wu JT, Gong J, Geng J, Song YX. Deoxycholic acid induces the overexpression of intestinal mucin, MUC2, via NF-kB signaling pathway in human esophageal adenocarcinoma cells. BMC Cancer 2008;8(1):1–10. doi:10.1186/1471-2407-8-333.
  • Doden H, Sallam LA, Devendran S, Ly L, Doden G, Daniel SL, Ridlon JM, Ridlon JM. Metabolism of oxo-bile acids and characterization of recombinant 12α-hydroxysteroid dehydrogenases from bile acid 7α-dehydroxylating human gut bacteria. Appl Environ Microbiol 2018;84(10):e00235–18. doi:10.1128/AEM.00235-18.
  • Macdonald IA, Jellett JF, Mahony DE, Doden H, Sallam LA, Devendran S, Ly L, Doden G, Daniel SL, Alves JMP. 12alpha-Hydroxysteroid dehydrogenase from Clostridium group P strain C48-50 ATCC No. 29733: partial purification and characterization. J Lipid Res 1979;20(2):234–239. doi:10.1016/S0022-2275(20)40635-2.
  • Harris JN, Hylemon PB. Partial purification and characterization of NADP-dependent 12α-hydroxysteroid dehydrogenase from Clostridium leptum. Biochim Biophys Acta 1978;528(1):148–157. doi:10.1016/0005-2760(78)90060-7.
  • Macdonald IA, Jellett JF, Mahony DE, Holdeman LV. Bile salt 3α- and 12α-hydroxysteroid dehydrogenases from Eubacterium lentum and related organisms. Appl Environ Microbiol 1979;37(5):992–1000. doi:10.1128/AEM.37.5.992-1000.1979.
  • Macdonald IA, Meier EC, Mahony DE, Costain GA. 3α-, 7α- And 12α-hydroxysteroid dehydrogenase activities from Clostridium perfringens. Biochim Biophys Acta 1976;450(2):142–153. doi:10.1016/0005-2760(76)90086-2.
  • Mythen SM, Devendran S, Méndez-García C, Cann I, Ridlon JM, Vieille C. Targeted synthesis and characterization of a gene cluster encoding NAD(P)H-Dependent 3α-, 3β-, and 12α-Hydroxysteroid dehydrogenases from Eggerthella CAG:298, a gut metagenomic sequence. Appl Environ Microbiol 2018;84(7):e02475–17. doi:10.1128/AEM.02475-17.
  • Ali SS, Kuksis A, Beveridge JM, Kuksis A, Beveridge JM, Beveridge JM. Excretion of bile acids by three men on corn oil and butterfat diets. Can J Biochem 1966;44(5):1377–1388. doi:10.1139/o66-156.
  • Ali SS, Kuksis A, Beveridge JM. Excretion of bile acids by three men on a fat-free diet. Can J Biochem 1966;44(6):957–969. doi:10.1139/o66-112.
  • Eneroth P, Gordon B, Ryhage R, Sjövall J. Identification of mono- and dihydroxy bile acids in human feces by gas-liquid chromatography and mass spectrometry. J Lipid Res 1966;7(4):511–523. doi:10.1016/S0022-2275(20)39261-0.
  • Edenharder R, Schneider J. 12β-Dehydrogenation of bile acids by Clostridium paraputrificum, C. tertium, and C. difficile and epimerization at carbon-12 of deoxycholic acid by cocultivation with 12α-dehydrogenating Eubacterium lentum. Appl Environ Microbiol 1985;49(4):964–968. doi:10.1128/AEM.49.4.964-968.1985.
  • Edenharder R, Pfützner A. Characterization of NADP-dependent 12β-hydroxysteroid dehydrogenase from Clostridium paraputrificum. Biochim Biophys Acta 1988;962(3):362–370. doi:10.1016/0005-2760(88)90266-4.
  • Penning TM. Human hydroxysteroid dehydrogenases and pre-receptor regulation: insights into inhibitor design and evaluation. J Steroid Biochem Mol Biol 2011;125:46–56.
  • Krogh A, Larsson B, Von Heijne G, Sonnhammer ELL. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 2001;305(3):567–580. doi:10.1006/jmbi.2000.4315.
  • Kiu R, Caim S, Alcon-Giner C, Belteki G, Clarke P, Pickard D, Dougan G, Hall LJ. Preterm infant-associated Clostridium tertium, Clostridium cadaveris, and Clostridium paraputrificum strains: genomic and evolutionary insights. Genome Biol Evol 2017;9(10):2707–2714. doi:10.1093/gbe/evx210.
  • Muñoz M, Restrepo-Montoya D, Kumar N, Iraola G, Herrera G, Ríos-Chaparro DI, Díaz-Arévalo D, Patarroyo MA, Lawley TD, Ramírez JD. Comparative genomics identifies potential virulence factors in Clostridium tertium and C. paraputrificum. Virulence 2019;10(1):657–676. doi:10.1080/21505594.2019.1637699.
  • Liu L, Aigner A, Schmid RD. Identification, cloning, heterologous expression, and characterization of a NADPH-dependent 7β-hydroxysteroid dehydrogenase from Collinsella aerofaciens. Appl Microbiol Biotechnol 2011;90(1):127–135. doi:10.1007/s00253-010-3052-y.
  • Wegner K, Just S, Gau L, Mueller H, Gérard P, Lepage P, Clavel T, Rohn S. Rapid analysis of bile acids in different biological matrices using LC-ESI-MS/MS for the investigation of bile acid transformation by mammalian gut bacteria. Anal Bioanal Chem 2017;409(5):1231–1245. doi:10.1007/s00216-016-0048-1.
  • Sohn JH, Kwon KK, Kang JH, Jung HB, Kim SJ. Novosphingobium pentaromativorans sp. nov., a high-molecular-mass polycyclic aromatic hydrocarbon-degrading bacterium isolated from estuarine sediment. Int J Syst Evol Microbiol 2004;54(5):1483–1487. doi:10.1099/ijs.0.02945-0.
  • Hashimoto T, Onda K, Morita T, Luxmy BS, Tada K, Miya A, Murakami T. Contribution of the Estrogen-Degrading Bacterium Novosphingobium sp. Strain JEM-1 to Estrogen removal in wastewater treatment. J Environ Eng 2010;136(9):890–896. doi:10.1061/(ASCE)EE.1943-7870.0000218.
  • Gan HM, Hudson AO, Rahman AYA, Chan KG, Savka MA. Comparative genomic analysis of six bacteria belonging to the genus Novosphingobium: insights into marine adaptation, cell-cell signaling and bioremediation. BMC Genomics 2013;14(1):431. doi:10.1186/1471-2164-14-431.
  • Yu J, Feng Q, Wong SH, Zhang D, Yi Liang Q, Qin Y, Tang L, Zhao H, Stenvang J, Li Y, et al. Metagenomic analysis of faecal microbiome as a tool towards targeted non-invasive biomarkers for colorectal cancer. Gut 2017;66(1):70–78. doi:10.1136/gutjnl-2015-309800.
  • Zeller G, Tap J, Voigt AY, Sunagawa S, Kultima JR, Costea PI, Amiot A, Böhm J, Brunetti F, Habermann N, et al. Potential of fecal microbiota for early-stage detection of colorectal cancer. Mol Syst Biol 2014;10(11):1–18. doi:10.15252/msb.20145645.
  • Vogtmann E, Hua X, Zeller G, Sunagawa S, Voigt AY, Hercog R, Goedert JJ, Shi J, Bork P, Sinha R. Colorectal cancer and the human gut microbiome: reproducibility with whole-genome shotgun sequencing. PLoS One 2016;11(5):e0155362. doi:10.1371/journal.pone.0155362.
  • Feng Q, Liang S, Jia H, Stadlmayr A, Tang L, Lan Z, Zhang D, Xia H, Xu X, Jie Z, et al. Gut microbiome development along the colorectal adenoma-carcinoma sequence. Nat Commun 2015;6(1):1–13. doi:10.1038/ncomms7528.
  • Chung WSF, Meijerink M, Zeuner B, Holck J, Louis P, Meyer AS, Wells JM, Flint HJ, Duncan SH. Prebiotic potential of pectin and pectic oligosaccharides to promote anti-inflammatory commensal bacteria in the human colon. FEMS Microbiol Ecol 2017;93(11):1–9. doi:10.1093/femsec/fix127.
  • Liu S, Zhao W, Liu X, Cheng L. Metagenomic analysis of the gut microbiome in atherosclerosis patients identify cross-cohort microbial signatures and potential therapeutic target. Faseb J 2020;34(11):14166–14181. doi:10.1096/fj.202000622R.
  • Aigner A, Gross R, Schmid R, Braun M, Mauer S Novel 12α-hydroxysteroid dehydrogenases, production and use therof. 2011:US patent 20110091921A1.
  • Baron SF, Franklund CV, Hylemon PB. Cloning, sequencing, and expression of the gene coding for bile acid 7 alpha-hydroxysteroid dehydrogenase from Eubacterium sp. strain VPI 12708. J Bacteriol 1991;173(15):4558–4569. doi:10.1128/JB.173.15.4558-4569.1991.
  • Yoshimoto T, Higashi H, Kanatani A, Lin XS, Nagai H, Oyama H, Kurazono K, Tsuru D. Cloning and sequencing of the 7 alpha-hydroxysteroid dehydrogenase gene from Escherichia coli HB101 and characterization of the expressed enzyme. J Bacteriol 1991;173(7):2173–2179. doi:10.1128/JB.173.7.2173-2179.1991.
  • Lee JY, Arai H, Nakamura Y, Fukiya S, Wada M, Yokota A. Contribution of the 7β-hydroxysteroid dehydrogenase from Ruminococcus gnavus N53 to ursodeoxycholic acid formation in the human colon. J Lipid Res 2013;54(11):3062–3069. doi:10.1194/jlr.M039834.
  • Ferrandi EE, Bertolesi GM, Polentini F, Negri A, Riva S, Monti D. In search of sustainable chemical processes: cloning, recombinant expression, and functional characterization of the 7α- and 7β-hydroxysteroid dehydrogenases from Clostridium absonum. Appl Microbiol Biotechnol 2012;95(5):1221–1233. doi:10.1007/s00253-011-3798-x.
  • Devlin AS, Fischbach MA. A biosynthetic pathway for a prominent class of microbiota-derived bile acids. Nat Chem Biol 2015;11(9):685–690. doi:10.1038/nchembio.1864.
  • Doden HL, Pollet RM, Mythen SM, Wawrzak Z, Devendran S, Cann I, Koropatkin NM, Ridlon JM. Structural and biochemical characterization of 20β-hydroxysteroid dehydrogenase from Bifidobacterium adolescentis strain L2-32. J Biol Chem 2019;294(32):12040–12053. doi:10.1074/jbc.RA119.009390.
  • Devendran S, Méndez-García C, Ridlon JM. Identification and characterization of a 20β-HSDH from the anaerobic gut bacterium Butyricicoccus desmolans ATCC 43058. J Lipid Res 2017;58(5):916–925. doi:10.1194/jlr.M074914.
  • Ridlon JM, Ikegawa S, Alves JMP, Zhou B, Kobayashi A, Iida T, Mitamura K, Tanabe G, Serrano M, De Guzman A, et al. Clostridium scindens: a human gut microbe with a high potential to convert glucocorticoids into androgens. J Lipid Res 2013;54(9):2437–2449. doi:10.1194/jlr.M038869.
  • Bernardi R, Doden H, Melo M, Devendran S, Pollet R, Mythen S, Bhowmik S, Lesley S, Cann I, Luthey-Schulten Z, et al. Bacteria on steroids: the enzymatic mechanism of an NADH-dependent dehydrogenase that regulates the conversion of cortisol to androgen in the gut microbiome. 2020 :bioRxiv 2020. 06.12. 149468. Available from: https://doi.org/10.1101/2020.06.12.149468
  • Fahrbach M, Kuever J, Meinke R, Kämpfer P, Hollender J. Denitratisoma oestradiolicum gen. nov., sp. nov., a 17β-oestradiol-degrading, denitrifying betaproteobacterium. Int J Syst Evol Microbiol 2006;56(7):1547–1552. doi:10.1099/ijs.0.63672-0.
  • Ricaboni D, Mailhe M, Vitton V, Cadoret F, Fournier PE, Raoult D. ‘Intestinibacillus massiliensis’ gen. nov., sp. nov., isolated from human left colon. New Microbes New Infect 2017;17:18–20. doi:10.1016/j.nmni.2016.12.008.
  • Morris DJ, Ridlon JM. Glucocorticoids and gut bacteria: “The GALF Hypothesis” in the metagenomic era. Steroids 2017;125:1–13. doi:10.1016/j.steroids.2017.06.002.
  • Sherrod JA, Hylemon PB. Partial purification and characterization of NAD-dependent 7alpha-hydroxysteroid dehydrogenase from Bacteroides thetaiotaomicron. Biochimica Et Biophysica Acta 1977;486(2):351–358. doi:10.1016/0005-2760(77)90031-5.
  • Edenharder R, Mielek K. Epimerization, oxidation and reduction of bile acids by Eubacterium lentum. Syst Appl Microbiol 1984;5(3):287–298. doi:10.1016/S0723-2020(84)80031-4.
  • Snyder ML. The serologic agglutinatin of the obligate anaerobes Clostridium paraputrificum (Beinstock) and Clostridium capitovalis (Snyder and Hall). J Bacteriol 1936;32(4):401–410. doi:10.1128/JB.32.4.401-410.1936.
  • Harris SC, Devendran S, Méndez- García C, Mythen SM, Wright CL, Fields CJ, Hernandez AG, Cann I, Hylemon PB, Ridlon JM. Bile acid oxidation by Eggerthella lenta strains C592 and DSM 2243. Gut Microbes 2018;9:523–539.
  • Filling C, Berndt KD, Benach J, Knapp S, Prozorovski T, Nordling E, Ladenstein R, Jörnvall H, Oppermann U. Critical residues for structure and catalysis in short-chain dehydrogenases/reductases. J Biol Chem 2002;277(28):25677–25684. doi:10.1074/jbc.M202160200.
  • Grimm C, Maseri E, Möbusi E, Klebe G, Reuter K, Ficner R. The crystal structure of 3α-hydroxysteroid dehydrogenase/carbonyl reductase from Comamonas testosteroni shows a novel oligomerization pattern within the short chain dehydrogenase/reductase family. J Biol Chem 2000;275(52):41333–41339. doi:10.1074/jbc.M007559200.
  • Savino S, Ferrandi EE, Forneris F, Rovida S, Riva S, Monti D, Mattevi A. Structural and biochemical insights into 7β-hydroxysteroid dehydrogenase stereoselectivity. Proteins 2016;84(6):859–865. doi:10.1002/prot.25036.
  • Jang LG, Choi G, Kim SW, Kim BY, Lee S, Park H. The combination of sport and sport-specific diet is associated with characteristics of gut microbiota: an observational study. J Int Soc Sports Nutr 2019;16(1):1–10. doi:10.1186/s12970-019-0290-y.
  • Ma S, You Y, Huang L, Long S, Zhang J, Guo C, Zhang N, Wu X, Xiao Y, Tan H. Alterations in gut microbiota of gestational diabetes patients during the first trimester of pregnancy. Front Cell Infect Microbiol 2020;10:1–14. doi:10.3389/fcimb.2020.00058.
  • Amaruddin AI, Hamid F, Koopman JPR, Muhammad M, Brienen EAT, Van Lieshout L, Geelen AR, Wahyuni S, Kuijper EJ, Sartono E, et al. The bacterial gut microbiota of schoolchildren from high and low socioeconomic status: a study in an urban area of Makassar, Indonesia. Microorganisms 2020;8(6):1–12. doi:10.3390/microorganisms8060961.
  • Doumatey AP, Adeyemo A, Zhou J, Lei L, Adebamowo SN, Adebamowo C, Rotimi CN. Gut microbiome profiles are associated with type 2 diabetes in urban africans. Front Cell Infect Microbiol 2020;10:1–13. doi:10.3389/fcimb.2020.00063.
  • Turpin W, Espin-Garcia O, Xu W, Silverberg MS, Kevans D, Smith MI, Guttman DS, Griffiths A, Panaccione R, Otley A, et al. Association of host genome with intestinal microbial composition in a large healthy cohort. Nat Genet 2016;48(11):1413–1417. doi:10.1038/ng.3693.
  • Labbé A, Ganopolsky JG, Martoni CJ, Prakash S, Jones ML, Hogan SP. Bacterial bile metabolising gene abundance in Crohn’s, ulcerative colitis and type 2 diabetes metagenomes. PLoS One 2014;9(12):e115175. doi:10.1371/journal.pone.0115175.
  • Lepercq P, Gérard P, Béguet F, Raibaud P, Grill JP, Relano P, Cayuela C, Juste C. Epimerization of chenodeoxycholic acid to ursodeoxycholic acid by Clostridium baratii isolated from human feces. FEMS Microbiol Lett 2004;235(1):65–72. doi:10.1111/j.1574-6968.2004.tb09568.x.
  • Horinouchi M, Hayashi T, Koshino H, Malon M, Yamamoto T, Kudo T. Identification of genes involved in inversion of stereochemistry of a C-12 hydroxyl group in the catabolism of cholic acid by Comamonas testosteroni TA441. J Bacteriol 2008;190(16):5545–5554. doi:10.1128/JB.01080-07.
  • Holert J, Ž K, Yücel O, Suvekbala V, Suter MJF, Möller HM, Philipp B. Degradation of the acyl side chain of the steroid compound cholate in Pseudomonas sp. strain Chol1 proceeds via an aldehyde intermediate. J Bacteriol 2013;195(3):585–595. doi:10.1128/JB.01961-12.
  • Edenharder R, Pfützner M, Hammann R. NADP-dependent 3β-, 7α- and 7β-hydroxysteroid dehydrogenase activities from a lecithinase-lipase-negative Clostridium species 25.11.c. Biochim Biophys Acta 1989;1002(1):37–44. doi:10.1016/0005-2760(89)90061-1.
  • Wahlström A, Kovatcheva-Datchary P, Ståhlman M, Bäckhed F, Marschall HU. Crosstalk between bile acids and gut microbiota and its impact on farnesoid X receptor signalling. Dig Dis 2017;35(3):246–250. doi:10.1159/000450982.
  • Song X, Sun X, Oh SF, Wu M, Zhang Y, Zheng W, Geva-Zatorsky N, Jupp R, Mathis D, Benoist C, et al. Microbial bile acid metabolites modulate gut RORγ+ regulatory T cell homeostasis. Nature 2020;577(7790):410–415. doi:10.1038/s41586-019-1865-0.
  • Campbell C, McKenney PT, Konstantinovsky D, Isaeva OI, Schizas M, Verter J, Mai C, Jin WB, Guo CJ, Violante S, et al. Bacterial metabolism of bile acids promotes generation of peripheral regulatory T cells. Nature 2020;581(7809):475–479. doi:10.1038/s41586-020-2193-0.
  • Sutherland JD, Williams CN. Bile acid induction of 7 alpha- and 7 beta-hydroxysteroid dehydrogenases in Clostridium limosum. J Lipid Res 1985;26(3):344–350. doi:10.1016/S0022-2275(20)34377-7.
  • Hofmann AF, Roda A. Physicochemical properties of bile acids and their relationship to biological properties: an overview of the problem. J Lipid Res 1984;25(13):1477–1489. doi:10.1016/S0022-2275(20)34421-7.
  • Goossens J, Bailly C. Ursodeoxycholic acid and cancer: from chemoprevention to chemotherapy. Pharmacol Ther 2019;203:107396. doi:10.1016/j.pharmthera.2019.107396.
  • Liu Y, Rong Z, Xiang D, Zhang C, Liu D. Detection technologies and metabolic profiling of bile acids: a comprehensive review. Lipids Health Dis 2018;17(1):121. doi:10.1186/s12944-018-0774-9.
  • Franco P, Porru E, Fiori J, Gioiello A, Cerra B, Roda G, Caliceti C, Simoni P, Roda A. Identification and quantification of oxo-bile acids in human faeces with liquid chromatography–mass spectrometry: a potent tool for human gut acidic sterolbiome studies. J Chromatogr A 2019;1585:70–81. doi:10.1016/j.chroma.2018.11.038.
  • Hofmann AF, Hagey LR, Krasowski MD. Bile salts of vertebrates: structural variation and possible evolutionary significance. J Lipid Res 2010;51(2):226–246. doi:10.1194/jlr.R000042.
  • Chang FC. Potential Bile Acid Metabolites. 5.1 12B-Hydroxy Acids by Stereoselective Reduction. Synth Commun 1981;11(11):875–879. doi:10.1080/00397918108065741.
  • Iida T, Momose T, Chang FC, Nambara T. Potential bile acid metabolites. XI. Syntheses of stereoisomeric 7,12-dihydroxy-5α-cholanic acids. Chem Pharm Bull 1986;34(5):1934–1938. doi:10.1248/cpb.34.1934.
  • Borgström B, Barrowman J, Krabisch L, Lindström M, Lillienau J. Effects of cholic acid, 7β-hydroxy- and 12β-hydroxy-isocholic acid on bile flow, lipid secretion and bile acid synthesis in the rat. Scand J Clin Lab Invest 1986;46(2):167–175. doi:10.3109/00365518609083654.
  • Reddy BS, Maeura Y.Tumor promotion by dietary fat in azoxymethane-induced colon carcinogenesis in female F344 rats: Influence of amount and source of dietary fat. J Natl Cancer Inst 1984; 72:745–50. doi:10.3109/00365518609083654.
  • Eneroth P. Thin-layer chromatography of bile acids. J Lipid Res 1963;4(1):11–16. doi:10.1016/S0022-2275(20)40358-X.
  • Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, Madden TL. BLAST+: architecture and applications. BMC Bioinform 2009;10(1):1–9. doi:10.1186/1471-2105-10-421.
  • Edgar RCMUSCLE. Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2004;32(5):1792–1797. doi:10.1093/nar/gkh340.
  • Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014;30(9):1312–1313. doi:10.1093/bioinformatics/btu033.
  • Huson DH, Richter DC, Rausch C, Dezulian T, Franz M, Rupp R. Dendroscope: an interactive viewer for large phylogenetic trees. BMC Bioinform 2007;8(1):460. doi:10.1186/1471-2105-8-460.
  • Pasolli E, Asnicar F, Manara S, Zolfo M, Karcher N, Armanini F, Beghini F, Manghi P, Tett A, Ghensi P, et al. Extensive unexplored human microbiome diversity revealed by over 150,000 genomes from metagenomes spanning age, geography, and lifestyle. Cell 2019;176(3):649–662. doi:10.1016/j.cell.2019.01.001.
  • Eddy SR, Pearson WR. Accelerated profile HMM searches. PLoS Comput Biol 2011;7(10):e1002195. doi:10.1371/journal.pcbi.1002195.