3,647
Views
8
CrossRef citations to date
0
Altmetric
Research Paper

Phospholipid metabolites of the gut microbiota promote hypoxia-induced intestinal injury via CD1d-dependent γδ T cells

ORCID Icon, , , , , , , & ORCID Icon show all
Article: 2096994 | Received 29 Mar 2022, Accepted 27 Jun 2022, Published online: 27 Jul 2022

References

  • Wilson R. Acute high-altitude illness in mountaineers and problems of rescue. Ann Intern Med. 1973;78(3):421–20. doi:10.7326/0003-4819-78-3-421.
  • Basnyat B, Murdoch DR. High-altitude illness. Lancet. 2003;361(9373):1967–1974. doi:10.1016/S0140-6736(03)13591-X.
  • Williamson J, Oakeshott P, Dallimore J. Altitude sickness and Acetazolamide. BMJ. 2018;361:k2153. doi:10.1136/bmj.k2153.
  • Davis C, Hackett P. Advances in the prevention and treatment of high altitude illness. Emerg Med Clin North Am. 2017;35:241–260. doi:10.1016/j.emc.2017.01.002.
  • Simancas-Racines D, Arevalo-Rodriguez I, Osorio D, Franco JV, Xu Y, Hidalgo R. Interventions for treating acute high altitude illness. Cochrane Database Syst Rev. 2018;6:CD009567. doi:10.1002/14651858.CD009567.pub2.
  • Meier D, Collet TH, Locatelli I, Cornuz J, Kayser B, Simel DL, Sartori C. Does this patient have acute mountain sickness?: the rational clinical examination systematic review. JAMA. 2017;318:1810–1819. doi:10.1001/jama.2017.16192.
  • Roach RC, Hackett PH, Oelz O, Bartsch P, Luks AM, MacInnis MJ, Baillie JK. The 2018 lake louise acute mountain sickness score. High Alt Med Biol. 2018;19:4–6. doi:10.1089/ham.2017.0164.
  • Hooper LV, Littman DR, Macpherson AJ. Interactions between the microbiota and the immune system. Science. 2012;336:1268–1273. doi:10.1126/science.1223490.
  • Maynard CL, Elson CO, Hatton RD, Weaver CT. Reciprocal interactions of the intestinal microbiota and immune system. Nature. 2012;489:231–241. doi:10.1038/nature11551.
  • Ma X, Zhou Z, Zhang X, Fan M, Hong Y, Feng Y, Dong Q, Diao H, Wang G. Sodium butyrate modulates gut microbiota and immune response in colorectal cancer liver metastatic mice. Cell Biol Toxicol. 2020;36(5):509–515. doi:10.1007/s10565-020-09518-4.
  • Hou X, Yang Y, Chen J, Jia H, Zeng P, Lv L, Lu Y, Liu X, Diao H. Tcrβ repertoire of memory t cell reveals potential role for Escherichia coli in the pathogenesis of primary biliary cholangitis. Liver Int. 2019;39:956–966. doi:10.1111/liv.14066.
  • Chen J, Wei Y, He J, Cui G, Zhu Y, Lu C, Ding Y, Xue R, Bai L, Uede T, et al. Natural killer t cells play a necessary role in modulating of immune-mediated liver injury by gut microbiota. Sci Rep. 2014;4:7259. doi:10.1038/srep07259.
  • Zhu LL, Ma ZJ, Ren M, Wei YM, Liao YH, Shen YL, Fan SM, Li L, Wu QX, Gao ZS, et al. Distinct features of gut microbiota in high-altitude Tibetan and middle-altitude han hypertensive patients. Cardiol Res Pract. 2020;2020:1957843. doi:10.1155/2020/1957843.
  • Nielsen MM, Witherden DA, Havran WL. γδ t cells in homeostasis and host defence of epithelial barrier tissues. Nat Rev Immunol. 2017;17(12):733–745. doi:10.1038/nri.2017.101.
  • Jin C, Lagoudas GK, Zhao C, Bullman S, Bhutkar A, Hu B, Ameh S, Sandel D, Liang XS, Mazzilli S, et al. Commensal microbiota promote lung cancer development via γδ t cells. Cell. 2019;176(5):998–1013 e1016. doi:10.1016/j.cell.2018.12.040.
  • Suhail A, Rizvi ZA, Mujagond P, Ali SA, Gaur P, Singh M, Ahuja V, Awasthi A, Srikanth CV. Desumoylase senp7-mediated epithelial signaling triggers intestinal inflammation via expansion of gamma-delta t cells. Cell Rep. 2019;29(11):3522–3538 e3527. doi:10.1016/j.celrep.2019.11.028.
  • Bonneville M, O’Brien RL, Born WK. γδ t cell effector functions: a blend of innate programming and acquired plasticity. Nat Rev Immunol. 2010;10(7):467–478. doi:10.1038/nri2781.
  • Park SG, Mathur R, Long M, Hosh N, Hao L, Hayden MS, Ghosh S. T regulatory cells maintain intestinal homeostasis by suppressing γδ t cells. Immunity. 2010;33(5):791–803. doi:10.1016/j.immuni.2010.10.014.
  • Luoma AM, Castro CD, Adams EJ. γδ t cell surveillance via cd1 molecules. Trends Immunol. 2014;35(12):613–621. doi:10.1016/j.it.2014.09.003.
  • Colgan SP, Hershberg RM, Furuta GT, Blumberg RS. Ligation of intestinal epithelial cd1d induces bioactive il-10: critical role of the cytoplasmic tail in autocrine signaling. Proc Natl Acad Sci U S A. 1999;96(24):13938–13943. doi:10.1073/pnas.96.24.13938.
  • Dieude M, Striegl H, Tyznik AJ, Wang J, Behar SM, Piccirillo CA, Levine JS, Zajonc DM, Rauch J. Cardiolipin binds to cd1d and stimulates cd1d-restricted γδ t cells in the normal murine repertoire. J Immunol. 2011;186(8):4771–4781. doi:10.4049/jimmunol.1000921.
  • Li F, Hao X, Chen Y, Bai L, Gao X, Lian Z, Wei H, Sun R, Tian Z. The microbiota maintain homeostasis of liver-resident γδ t-17 cells in a lipid antigen/cd1d-dependent manner. Nat Commun. 2017;7:13839. doi:10.1038/ncomms13839.
  • Russano AM, Bassotti G, Agea E, Bistoni O, Mazzocchi A, Morelli A, Porcelli SA, Spinozzi F. Cd1-restricted recognition of exogenous and self-lipid antigens by duodenal γδ+ t lymphocytes. J Immunol. 2007;178:3620–3626. doi:10.4049/jimmunol.178.6.3620.
  • Bai L, Picard D, Anderson B, Chaudhary V, Luoma A, Jabri B, Adams EJ, Savage PB, Bendelac A. The majority of cd1d-sulfatide-specific t cells in human blood use a semiinvariant vdelta1 tcr. Eur J Immunol. 2012;42:2505–2510. doi:10.1002/eji.201242531.
  • Zeissig S, Murata K, Sweet L, Publicover J, Hu Z, Kaser A, Bosse E, Iqbal J, Hussain MM, Balschun K, et al. Hepatitis b virus-induced lipid alterations contribute to natural killer t cell-dependent protective immunity. Nat Med. 2012;18:1060–1068. doi:10.1038/nm.2811.
  • Yanagisawa K, Yue S, van der Vliet HJ, Wang R, Alatrakchi N, Golden-Mason L, Schuppan D, Koziel MJ, Rosen HR, Exley MA. Ex vivo analysis of resident hepatic pro-inflammatory cd1d-reactive t cells and hepatocyte surface cd1d expression in hepatitis c. J Viral Hepat. 2013;20:556–565. doi:10.1111/jvh.12081.
  • Diao H, Kon S, Iwabuchi K, Kimura C, Morimoto J, Ito D, Segawa T, Maeda M, Hamuro J, Nakayama T, et al. Osteopontin as a mediator of nkt cell function in t cell-mediated liver diseases. Immunity. 2004;21:539–550. doi:10.1016/j.immuni.2004.08.012.
  • Atarashi K, Tanoue T, Oshima K, Suda W, Nagano Y, Nishikawa H, Fukuda S, Saito T, Narushima S, Hase K, et al. Treg induction by a rationally selected mixture of clostridia strains from the human microbiota. Nature. 2013;500:232–236. doi:10.1038/nature12331.
  • Kushkevych I, Dordevic D, Vitezova M. Possible synergy effect of hydrogen sulfide and acetate produced by sulfate-reducing bacteria on inflammatory bowel disease development. J Adv Res. 2021;27:71–78. doi:10.1016/j.jare.2020.03.007.
  • Mergaert P, Kikuchi Y, Shigenobu S, Nowack ECM. Metabolic integration of bacterial endosymbionts through antimicrobial peptides. Trends Microbiol. 2017;25:703–712. doi:10.1016/j.tim.2017.04.007.
  • Chung LK. Pros: antimicrobial defense in the gastrointestinal tract. Semin Cell Dev Biol. 2019;88:129–137. doi:10.1016/j.semcdb.2018.02.001.
  • McGeachy MJ, Cua DJ, Gaffen SL. The il-17 family of cytokines in health and disease. Immunity. 2019;50:892–906. doi:10.1016/j.immuni.2019.03.021.
  • Wells JM, Rossi O, Meijerink M, Baarlen P. Epithelial crosstalk at the microbiota-mucosal interface. Proc Natl Acad Sci U S A. 2011;108:4607–4614. doi:10.1073/pnas.1000092107.
  • Bi K, Zhang X, Chen W, Diao H. MicroRNAs regulate intestinal immunity and gut microbiota for gastrointestinal health: a comprehensive review. Genes (Basel). 2020;11:1075. doi:10.3390/genes11091075.
  • Ren Z, Wang H, Cui G, Lu H, Wang L, Luo H, Chen X, Ren H, Sun R, Liu W, et al. Alterations in the human oral and gut microbiomes and lipidomics in covid-19. Gut. 2021;70:1253–1265. doi:10.1136/gutjnl-2020-323826.
  • Gu S, Chen Y, Wu Z, Chen Y, Gao H, Lv L, Guo F, Zhang X, Luo R, Huang C, et al. Alterations of the gut microbiota in patients with coronavirus disease 2019 or h1n1 influenza. Clin Infect Dis. 2020;71:2669–2678. doi:10.1093/cid/ciaa709.
  • Gao Q, Wang Y, Wang X, Fu S, Zhang X, Wang RT, Zhang X. Decreased levels of circulating trimethylamine n-oxide alleviate cognitive and pathological deterioration in transgenic mice: a potential therapeutic approach for Alzheimer’s disease. Aging (Albany NY). 2019;11:8642–8663. doi:10.18632/aging.102352.
  • Mancuso C, Santangelo R. Alzheimer’s disease and gut microbiota modifications: the long way between preclinical studies and clinical evidence. Pharmacol Res. 2018;129:329–336. doi:10.1016/j.phrs.2017.12.009.
  • Zhang F, Wan Y, Zuo T, Yeoh YK, Liu Q, Zhang L, Zhan H, Lu W, Xu W, Lui GCY, et al. Prolonged impairment of short-chain fatty acid and l-isoleucine biosynthesis in gut microbiome in patients with covid-19. Gastroenterology. 2021. doi:10.1053/j.gastro.2021.10.013.
  • Kimura A, Kishimoto T. Il-6: regulator of treg/th17 balance. Eur J Immunol. 2010;40:1830–1835. doi:10.1002/eji.201040391.
  • Lee JY, Hall JA, Kroehling L, Wu L, Najar T, Nguyen HH, Lin WY, Yeung ST, Silva HM, Li D, et al. Serum amyloid a proteins induce pathogenic th17 cells and promote inflammatory disease. Cell. 2020;183:2036–2039. doi:10.1016/j.cell.2020.12.008.
  • Mazzeo RS. Altitude, exercise and immune function. Exerc Immunol Rev. 2005;11:6–16.
  • Olson CA, Iniguez AJ, Yang GE, Fang P, Pronovost GN, Jameson KG, Rendon TK, Paramo J, Barlow JT, Ismagilov RF, et al. Alterations in the gut microbiota contribute to cognitive impairment induced by the ketogenic diet and hypoxia. Cell Host Microbe. 2021;29:1378–1392 e1376. doi:10.1016/j.chom.2021.07.004.
  • Khalyfa A, Ericsson A, Qiao Z, Almendros I, Farre R, Gozal D. Circulating exosomes and gut microbiome induced insulin resistance in mice exposed to intermittent hypoxia: effects of physical activity. EBioMedicine. 2021;64:103208. doi:10.1016/j.ebiom.2021.103208.
  • Lucking EF, O’Connor KM, Strain CR, Fouhy F, Bastiaanssen TFS, Burns DP, Golubeva AV, Stanton C, Clarke G, Cryan JF, et al. Chronic intermittent hypoxia disrupts cardiorespiratory homeostasis and gut microbiota composition in adult male Guinea-pigs. EBioMedicine. 2018;38:191–205. doi:10.1016/j.ebiom.2018.11.010.
  • Baloglu E, Nonnenmacher G, Seleninova A, Berg L, Velineni K, Ermis-Kaya E, Mairbaurl H. The role of hypoxia-induced modulation of alveolar epithelial na(+)- transport in hypoxemia at high altitude. Pulm Circ. 2020;10:50–58. doi:10.1177/2045894020936662.
  • Gaur P, Prasad S, Kumar B, Sharma SK, Vats P. High-altitude hypoxia induced reactive oxygen species generation, signaling, and mitigation approaches. Int J Biometeorol. 2021;65:601–615. doi:10.1007/s00484-020-02037-1.
  • Wang X, Lin X, Zheng Z, Lu B, Wang J, Tan AH, Zhao M, Loh JT, Ng SW, Chen Q, et al. Host-derived lipids orchestrate pulmonary γδ t cell response to provide early protection against influenza virus infection. Nat Commun. 2021;12:1914. doi:10.1038/s41467-021-22242-9.