1,172
Views
4
CrossRef citations to date
0
Altmetric
Research Paper

Host acid signal controls Salmonella flagella biogenesis through CadC-YdiV axis

, , , , , , , & ORCID Icon show all
Article: 2146979 | Received 04 Aug 2022, Accepted 09 Nov 2022, Published online: 01 Dec 2022

References

  • Smith SI, Seriki A, Ajayi A. Typhoidal and non-typhoidal Salmonella infections in Africa. Eur J Clin Microbiol Infect Dis. 2016;35(12):1913–17. doi:10.1007/s10096-016-2760-3.
  • Galan JE. Salmonella Typhimurium and inflammation: a pathogen-centric affair. Nat Rev Microbiol. 2021;19(11):716–725. doi:10.1038/s41579-021-00561-4.
  • Whiley H, Gardner MG, Ross K. A review of salmonella and squamates (Lizards, snakes and amphisbians): implications for public health. Pathogens. 2017;6(3):38. doi:10.3390/pathogens6030038.
  • Moffatt CR, Musto J, Pingault N, Miller M, Stafford R, Gregory J, Polkinghorne BG, Kirk MD. Salmonella typhimurium and outbreaks of egg-associated disease in Australia, 2001 to 2011. Foodborne Pathog Dis. 2016;13(7):379–385. doi:10.1089/fpd.2015.2110.
  • Buckle GC, Walker CL, Black RE. Typhoid fever and paratyphoid fever: systematic review to estimate global morbidity and mortality for 2010. J Glob Health. 2012;2(1):010401. doi:10.7189/jogh.01.010401.
  • Muvhali M, Smith AM, Rakgantso AM, Keddy KH. Investigation of salmonella enteritidis outbreaks in South Africa using multi-locus variable-number tandem-repeats analysis, 2013-2015. BMC Infect Dis. 2017;17(1):661. doi:10.1186/s12879-017-2751-8.
  • Haiko J, Westerlund-Wikstrom B. The role of the bacterial flagellum in adhesion and virulence. Biology (Basel). 2013;2(4):1242–1267. doi:10.3390/biology2041242.
  • Rossez Y, Wolfson EB, Holmes A, Gally DL, Holden NJ, Bliska JB. Bacterial flagella: twist and stick, or dodge across the kingdoms. PLoS Pathog. 2015;11(1):e1004483. doi:10.1371/journal.ppat.1004483.
  • Gut AM, Vasiljevic T, Yeager T, Donkor ON. Salmonella infection - prevention and treatment by antibiotics and probiotic yeasts: a review. Microbiology (Reading). 2018;164(11):1327–1344. doi:10.1099/mic.0.000709.
  • Frye J, Karlinsey JE, Felise HR, Marzolf B, Dowidar N, McClelland M, Hughes KT. Identification of new flagellar genes of Salmonella enterica serovar typhimurium. J Bacteriol. 2006;188(6):2233–2243. doi:10.1128/JB.188.6.2233-2243.2006.
  • Chilcott GS, Hughes KT. Coupling of flagellar gene expression to flagellar assembly in Salmonella enterica serovar typhimurium and Escherichia coli. Microbiol Mol Biol Rev. 2000;64(4):694–708. doi:10.1128/MMBR.64.4.694-708.2000.
  • Yanagihara S, Iyoda S, Ohnishi K, Iino T, Kutsukake K. Structure and transcriptional control of the flagellar master operon of Salmonella typhimurium. Genes Genet Syst. 1999;74(3):105–111. doi:10.1266/ggs.74.105.
  • Kutsukake K, Ohya Y, Iino T. Transcriptional analysis of the flagellar regulon of Salmonella typhimurium. J Bacteriol. 1990;172(2):741–747. doi:10.1128/jb.172.2.741-747.1990.
  • Ide N, Ikebe T, Kutsukake K. Reevaluation of the promoter structure of the class 3 flagellar operons of Escherichia coli and Salmonella. Genes Genet Syst. 1999;74(3):113–116. doi:10.1266/ggs.74.113.
  • Karlinsey JE, Tanaka S, Bettenworth V, Yamaguchi S, Boos W, Aizawa SI, Hughes KT. Completion of the hook-basal body complex of the Salmonella typhimurium flagellum is coupled to FlgM secretion and fliC transcription. Mol Microbiol. 2000;37(5):1220–1231. doi:10.1046/j.1365-2958.2000.02081.x.
  • Tomoyasu T, Takaya A, Isogai E, Yamamoto T. Turnover of FlhD and FlhC, master regulator proteins for Salmonella flagellum biogenesis, by the ATP-dependent ClpXP protease. Mol Microbiol. 2003;48(2):443–452. doi:10.1046/j.1365-2958.2003.03437.x.
  • Liu Y, Yu K, Zhou F, Ding T, Yang Y, Hu M, Liu X. Quantitative proteomics charts the landscape of Salmonella carbon metabolism within host epithelial cells. J Proteome Res. 2017;16(2):788–797. doi:10.1021/acs.jproteome.6b00793.
  • Srikumar S, Kroger C, Hebrard M, Colgan A, Owen SV, Sivasankaran SK, Cameron ADS, Hokamp K, Hinton JCD. RNA-seq brings new insights to the intra-macrophage transcriptome of Salmonella typhimurium. PLoS Pathog. 2015;11(11):e1005262. doi:10.1371/journal.ppat.1005262.
  • Li B, Li N, Wang F, Guo L, Huang Y, Liu X, Wei T, Zhu D, Liu C, Pan H, et al. Structural insight of a concentration-dependent mechanism by which YdiV inhibits Escherichia coli flagellum biogenesis and motility. Nucleic Acids Res. 2012;40(21):11073–11085. doi:10.1093/nar/gks869.
  • Wada T, Morizane T, Abo T, Tominaga A, Inoue-Tanaka K, Kutsukake K. EAL domain protein YdiV acts as an Anti-FlhD 4 C 2 factor responsible for nutritional control of the flagellar regulon in Salmonella enterica serovar typhimurium. J Bacteriol. 2011;193(7):1600–1611. doi:10.1128/JB.01494-10.
  • Takaya A, Erhardt M, Karata K, Winterberg K, Yamamoto T, Hughes KT. YdiV: a dual function protein that targets FlhDC for ClpXP-dependent degradation by promoting release of DNA-bound FlhDC complex. Mol Microbiol. 2012;83(6):1268–1284. doi:10.1111/j.1365-2958.2012.08007.x.
  • Li B, Yue Y, Yuan Z, Zhang F, Li P, Song N, Lin W, Liu Y, Yang Y, Li Z, et al. Salmonella STM1697 coordinates flagella biogenesis and virulence by restricting flagellar master protein FlhD4C2 from recruiting RNA polymerase. Nucleic Acids Res. 2017;45(17):9976–9989. doi:10.1093/nar/gkx656.
  • Ma Y, Yue Y, Jia H, Song N, Zhai L, Wang W, Li, C, Li, B. Switching off bacterial flagellar biogenesis by YdiU-mediated UMPylation of FlhDC. mBio 2022:e0024922. doi:10.1128/mbio.00249-22.
  • LaRock DL, Chaudhary A, Miller SI. Salmonellae interactions with host processes. Nat Rev Microbiol. 2015;13(4):191–205. doi:10.1038/nrmicro3420.
  • Gogoi M, Shreenivas MM, Chakravortty D. Hoodwinking the big-eater to prosper: the Salmonella-macrophage paradigm. J Innate Immun. 2019;11(3):289–299. doi:10.1159/000490953.
  • de Jong Hk, Parry CM, van der Poll T, Wiersinga WJ, de Jong HK. Host-pathogen interaction in invasive Salmonellosis. PLoS Pathog. 2012;8(10):e1002933. doi:10.1371/journal.ppat.1002933.
  • Sholpan A, Lamas A, Cepeda A, Franco CM. Salmonella spp. quorum sensing: an overview from environmental persistence to host cell invasion. AIMS Microbiol. 2021;7(2):238–256. doi:10.3934/microbiol.2021015.
  • Fang FC, Frawley ER, Tapscott T, Vazquez-Torres A. Bacterial stress responses during host infection. Cell Host Microbe. 2016;20(2):133–143. doi:10.1016/j.chom.2016.07.009.
  • Pradhan D, Devi Negi V. Stress-induced adaptations in Salmonella: a ground for shaping its pathogenesis. Microbiol Res. 2019;229:126311. doi:10.1016/j.micres.2019.126311.
  • Haraga A, Ohlson MB, Miller SI. Salmonellae interplay with host cells. Nat Rev Microbiol. 2008;6(1):53–66. doi:10.1038/nrmicro1788.
  • Zwir I, Shin D, Kato A, Nishino K, Latifi T, Solomon F, Hare JM, Huang H, Groisman EA. Dissecting the PhoP regulatory network of Escherichia coli and Salmonella enterica. Proc Natl Acad Sci U S A. 2005;102(8):2862–2867. doi:10.1073/pnas.0408238102.
  • Tu X, Latifi T, Bougdour A, Gottesman S, Groisman EA. The PhoP/PhoQ two-component system stabilizes the alternative sigma factor RpoS in Salmonella enterica. Proc Natl Acad Sci U S A. 2006;103(36):13503–13508. doi:10.1073/pnas.0606026103.
  • Garcia-Calderon CB, Casadesus J, Ramos-Morales F. Rcs and PhoPQ regulatory overlap in the control of Salmonella enterica virulence. J Bacteriol. 2007;189(18):6635–6644. doi:10.1128/JB.00640-07.
  • Chakraborty S, Winardhi RS, Morgan LK, Yan J, Kenney LJ. Non-canonical activation of OmpR drives acid and osmotic stress responses in single bacterial cells. Nat Commun. 2017;8(1):1587. doi:10.1038/s41467-017-02030-0.
  • Chakraborty S, Mizusaki H, Kenney LJ, Laub MT. A FRET-based DNA biosensor tracks OmpR-dependent acidification of Salmonella during macrophage infection. PLoS Biol. 2015;13(4):e1002116. doi:10.1371/journal.pbio.1002116.
  • Erhardt M, Dersch P. Regulatory principles governing Salmonella and Yersinia virulence. Front Microbiol. 2015;6:949. doi:10.3389/fmicb.2015.00949.
  • Banos RC, Pons JI, Madrid C, Juarez A. A global modulatory role for the Yersinia enterocolitica H-NS protein. Microbiology (Reading). 2008;154(5):1281–1289. doi:10.1099/mic.0.2007/015610-0.
  • Lucchini S, Rowley G, Goldberg MD, Hurd D, Harrison M, Hinton JC, Isberg RR. H-NS mediates the silencing of laterally acquired genes in bacteria. PLoS Pathog. 2006;2(8):e81. doi:10.1371/journal.ppat.0020081.
  • Krin E, Danchin A, Soutourina O. Decrypting the H-NS-dependent regulatory cascade of acid stress resistance in Escherichia coli. BMC Microbiol. 2010;10(1):273. doi:10.1186/1471-2180-10-273.
  • Stoebel DM, Free A, Dorman CJ. Anti-silencing: overcoming H-NS-mediated repression of transcription in Gram-negative enteric bacteria. Microbiology (Reading). 2008;154(9):2533–2545. doi:10.1099/mic.0.2008/020693-0.
  • Navarre WW, McClelland M, Libby SJ, Fang FC. Silencing of xenogeneic DNA by H-NS-facilitation of lateral gene transfer in bacteria by a defense system that recognizes foreign DNA. Genes Dev. 2007;21(12):1456–1471. doi:10.1101/gad.1543107.
  • Viala JP, Meresse S, Pocachard B, Guilhon AA, Aussel L, Barras F, Chakravortty D. Sensing and adaptation to low pH mediated by inducible amino acid decarboxylases in Salmonella. PLoS One. 2011;6(7):e22397. doi:10.1371/journal.pone.0022397.
  • Lee YH, Kim JH, Bang IS, Park YK. The membrane-bound transcriptional regulator CadC is activated by proteolytic cleavage in response to acid stress. J Bacteriol. 2008;190(14):5120–5126. doi:10.1128/JB.00012-08.
  • Kieboom J, Abee T. Arginine-dependent acid resistance in Salmonella enterica serovar typhimurium. J Bacteriol. 2006;188(15):5650–5653. doi:10.1128/JB.00323-06.
  • Lee YH, Kim BH, Kim JH, Yoon WS, Bang SH, Park YK. CadC has a global translational effect during acid adaptation in Salmonella enterica serovar typhimurium. J Bacteriol. 2007;189(6):2417–2425. doi:10.1128/JB.01277-06.
  • Fritz G, Koller C, Burdack K, Tetsch L, Haneburger I, Jung K, Gerland U. Induction kinetics of a conditional pH stress response system in Escherichia coli. J Mol Biol. 2009;393(2):272–286. doi:10.1016/j.jmb.2009.08.037.
  • Park YK, Bearson B, Bang SH, Bang IS, Foster JW. Internal pH crisis, lysine decarboxylase and the acid tolerance response of Salmonella typhimurium. Mol Microbiol. 1996;20(3):605–611. doi:10.1046/j.1365-2958.1996.5441070.x.
  • Chaban B, Hughes HV, Beeby M. The flagellum in bacterial pathogens: for motility and a whole lot more. Semin Cell Dev Biol. 2015;46:91–103. doi:10.1016/j.semcdb.2015.10.032.
  • Dibb-Fuller MP, Allen-Vercoe E, Thorns CJ, Woodward MJ. Fimbriae- and flagella-mediated association with and invasion of cultured epithelial cells by Salmonella enteritidis. Microbiology (Reading). 1999;145(Pt 5):1023–1031. doi:10.1099/13500872-145-5-1023.
  • Horstmann JA, Lunelli M, Cazzola H, Heidemann J, Kuhne C, Steffen P, Szefs S, Rossi C, Lokareddy RK, Wang C, et al. Methylation of Salmonella Typhimurium flagella promotes bacterial adhesion and host cell invasion. Nat Commun. 2020;11(1):2013. doi:10.1038/s41467-020-15738-3.
  • Stecher B, Hapfelmeier S, Muller C, Kremer M, Stallmach T, Hardt WD. Flagella and chemotaxis are required for efficient induction of Salmonella enterica serovar typhimurium colitis in streptomycin-pretreated mice. Infect Immun. 2004;72(7):4138–4150. doi:10.1128/IAI.72.7.4138-4150.2004.
  • Miao EA, Alpuche-Aranda CM, Dors M, Clark AE, Bader MW, Miller SI, Aderem A. Cytoplasmic flagellin activates caspase-1 and secretion of interleukin 1beta via Ipaf. Nat Immunol. 2006;7(6):569–575. doi:10.1038/ni1344.
  • Kinchen JM, Ravichandran KS. Phagosome maturation: going through the acid test. Nat Rev Mol Cell Biol. 2008;9(10):781–795. doi:10.1038/nrm2515.
  • Polen T, Rittmann D, Wendisch VF, Sahm H. DNA microarray analyses of the long-term adaptive response of Escherichia coli to acetate and propionate. Appl Environ Microbiol. 2003;69(3):1759–1774. doi:10.1128/AEM.69.3.1759-1774.2003.
  • Gu D, Wang K, Lu T, Li L, Jiao X. Vibrio parahaemolyticus CadC regulates acid tolerance response to enhance bacterial motility and cytotoxicity. J Fish Dis. 2021;44(8):1155–1168. doi:10.1111/jfd.13376.
  • Maurer LM, Yohannes E, Bondurant SS, Radmacher M, Slonczewski JL. pH regulates genes for flagellar motility, catabolism, and oxidative stress in Escherichia coli K-12. J Bacteriol. 2005;187(1):304–319. doi:10.1128/JB.187.1.304-319.2005.
  • Adams P, Fowler R, Kinsella N, Howell G, Farris M, Coote P, O’Connor CD. Proteomic detection of PhoPQ- and acid-mediated repression of Salmonella motility. Proteomics. 2001;1(4):597–607. doi:10.1002/1615-9861(200104)1:4<597::AID-PROT597>3.0.CO;2-P.
  • Ryan D, Pati NB, Ojha UK, Padhi C, Ray S, Jaiswal S, Singh GP, Mannala GK, Schultze T, Chakraborty T, et al. Global transcriptome and mutagenic analyses of the acid tolerance response of Salmonella enterica serovar Typhimurium. Appl Environ Microbiol. 2015;81(23):8054–8065. doi:10.1128/AEM.02172-15.
  • Lee YH, Kim JH. Direct interaction between the transcription factors CadC and OmpR involved in the acid stress response of Salmonella enterica. J Microbiol. 2017;55(12):966–972. doi:10.1007/s12275-017-7410-7.
  • Ibrahim GF, Fleet GH, Lyons MJ, Walker RA. Method for the isolation of highly purified Salmonella flagellins. J Clin Microbiol. 1985;22(6):1040–1044. doi:10.1128/jcm.22.6.1040-1044.1985.
  • Zhang F, Li B, Dong H, Chen M, Yao S, Li J, Zhang H, Liu X, Wang H, Song N, et al. YdiV regulates Escherichia coli ferric uptake by manipulating the DNA-binding ability of fur in a SlyD-dependent manner. Nucleic Acids Res. 2020;48(17):9571–9588. doi:10.1093/nar/gkaa696.
  • Hatamoto Y, Wada T, Kutsukake K. Anti-FlhD (4) C (2) protein YdiV plays a central role in H-NS-dependent regulation of flagellar synthesis in Escherichia coli. Genes & genetic systems: genetics soc Japan national inst genetics yata 1111, Mishima, Shizuoka-Ken … , 2011:408.
  • Maloy SR, Roth JR. Regulation of proline utilization in Salmonella typhimurium: characterization of put::Mu d(Ap,lac) operon fusions. J Bacteriol. 1983;154(2):561–568. doi:10.1128/jb.154.2.561-568.1983.
  • Datsenko KA, Wanner BL. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proceedings of the National Academy of Sciences of the United States of America. 2000;97:6640–6645. doi:10.1073/pnas.120163297.
  • Chowdhury RP, Gupta S, Chatterji D. Identification and characterization of the dps promoter of mycobacterium smegmatis: promoter recognition by stress-specific extracytoplasmic function sigma factors σ H and σ F. J Bacteriol. 2007;189(24):8973–8981. doi:10.1128/JB.01222-07.
  • Deng WG, Jayachandran G, Wu G, Xu K, Roth JA, Ji L. Tumor-specific activation of human telomerase reverses transcriptase promoter activity by activating enhancer-binding protein-2beta in human lung cancer cells. J Biol Chem. 2007;282(36):26460–26470. doi:10.1074/jbc.M610579200.
  • Wu KK. Analysis of protein-DNA binding by streptavidin-agarose pulldown. Methods Mol Biol. 2006;338:281–290.
  • Wang Y, Cen XF, Zhao GP, Wang J. Characterization of a new glnr binding box in the promoter of amtB in Streptomyces coelicolor inferred a phop/glnr competitive binding mechanism for transcriptional regulation of amtB. J Bacteriol. 2012;194(19):5237–5244. doi:10.1128/JB.00989-12.
  • Sultana A, Lee JE. Measuring protein-protein and protein-nucleic acid interactions by biolayer interferometry. Curr Protoc Protein Sci. 2015;79(1):19 25 1–19 25 6. doi:10.1002/0471140864.ps1925s79.
  • Sali A, Blundell TL. Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol. 1993;234(3):779–815. doi:10.1006/jmbi.1993.1626.