4,154
Views
7
CrossRef citations to date
0
Altmetric
Review

The potential role of adherence factors in probiotic function in the gastrointestinal tract of adults and pediatrics: a narrative review of experimental and human studies

ORCID Icon &
Article: 2149214 | Received 28 Jan 2022, Accepted 15 Nov 2022, Published online: 05 Dec 2022

References

  • Marchesi JR, Adams DH, Fava F, Hermes GDA, Hirschfield GM, Hold G, Quraishi MN, Kinross J, Smidt H, Tuohy KM, et al. 2016. The gut microbiota and host health: a new clinical frontier. Gut. 65(2):330–27. doi:10.1136/gutjnl-2015-309990.
  • Muegge BD, Kuczynski J, Knights D, Clemente JC, Gonzalez A, Fontana L, Henrissat B, Knight R, Gordon JI. 2011. Diet drives convergence in gut microbiome functions across mammalian phylogeny and within humans. Science. 332(6032):970–974. doi:10.1126/science.1198719.
  • O’Hara AM, Shanahan F. 2006. The gut flora as a forgotten organ. EMBO Rep. 7(7):688–693. doi:10.1038/sj.embor.7400731.
  • Huttenhower C, Gevers D, Knight R, Abubucker S, Badger JH, Chinwalla AT, Creasy HH, Earl AM, FitzGerald MG, Fulton RS, et al. 2012. Structure, function and diversity of the healthy human microbiome. Nature. 486:207–214.
  • Arumugam M, Raes J, Pelletier E, Le Paslier D, Yamada T, Mende DR, Fernandes GR, Tap J, Bruls T, Batto J-M, et al. 2011. Enterotypes of the human gut microbiome. Nature. 473(7346):174–180. doi:10.1038/nature09944.
  • O’Malley MA, Skillings DJ. 2018. Methodological strategies in microbiome research and their explanatory implications. Perspect Sci. 26(2):239–265. doi:10.1162/POSC_a_00274.
  • The Human Microbiome Project Consortium. 2012 Structure, function and diversity of the healthy human microbiome. Nature. 486(7402):207–214. doi:10.1038/nature11234.
  • van Best N, Trepels-Kottek S, Savelkoul P, Orlikowsky T, Hornef MW, Penders J. 2020. Influence of probiotic supplementation on the developing microbiota in human preterm neonates. Gut Microbes. 12(1):1826747. doi:10.1080/19490976.2020.1826747.
  • Otieno DO. 2011. Biology of Prokaryotic Probiotics. In: Liong M-T, editor. Probiotics. Berlin, Heidelberg: Springer Berlin Heidelberg; 1–28.
  • Lopez-Escalera S, Wellejus A. 2022. Evaluation of Caco-2 and human intestinal epithelial cells as in vitro models of colonic and small intestinal integrity. Biochemi Biophys Rep. 31:101314. doi:10.1016/j.bbrep.2022.101314.
  • Xia Y, Chen Y, Wang G, Yang Y, Song X, Xiong Z, Zhang H, Lai P, Wang S, Ai L. 2020. Lactobacillus plantarum AR113 alleviates DSS-induced colitis by regulating the TLR4/MyD88/NF-κB pathway and gut microbiota composition. J Funct Foods. 67:103854. doi:10.1016/j.jff.2020.103854.
  • Reid G, Gaudier E, Guarner F, Huffnagle GB, Macklaim JM, Munoz AM, Martini M, Ringel-Kulka T, Sartor BR, Unal RR, et al. 2010. Responders and non-responders to probiotic interventions: how can we improve the odds? Gut Microbes. 1(3):200–204. doi:10.4161/gmic.1.3.12013.
  • Bornholdt J, Broholm C, Chen Y, Rago A, Sloth S, Hendel J, Melsæther C, Müller CV, Juul Nielsen M, Strickertsson J, et al. 2020. Personalized B cell response to the Lactobacillus rhamnosus GG probiotic in healthy human subjects: a randomized trial. Gut Microbes. 12(1):1854639. doi:10.1080/19490976.2020.1854639.
  • Jang YJ, Kim W-K, Han DH, Lee K, Ko G. 2019. Lactobacillus fermentum species ameliorate dextran sulfate sodium-induced colitis by regulating the immune response and altering gut microbiota. Gut Microbes. 10(6):696–711. doi:10.1080/19490976.2019.1589281.
  • van Zyl WF, Deane SM, Dicks LMT. 2020. Molecular insights into probiotic mechanisms of action employed against intestinal pathogenic bacteria. Gut Microbes. 12(1):1831339. doi:10.1080/19490976.2020.1831339.
  • Zheng J, Wittouck S, Salvetti E, Franz CMAP, Harris HMB, Mattarelli P, O’Toole PW, Pot B, Vandamme P, Walter J, et al. 2020. A taxonomic note on the genus lactobacillus: description of 23 novel genera, emended description of the genus lactobacillus beijerinck 1901, and union of Lactobacillaceae and Leuconostocaceae. Int J Syst Evol Microbiol. 70(4):2782–2858. doi:10.1099/ijsem.0.004107.
  • Segers ME, Lebeer S. 2014. Towards a better understanding of Lactobacillus rhamnosus GG - host interactions. Microb Cell Fact. 13(Suppl 1):S7. doi:10.1186/1475-2859-13-S1-S7.
  • Guan C, Chen X, Jiang X, Zhao R, Yuan Y, Chen D, Zhang C, Lu M, Lu Z, Gu R. 2020. In vitro studies of adhesion properties of six lactic acid bacteria isolated from the longevous population of China. RSC Adv. 10(41):160–174. doi:10.1039/D0RA03517C.
  • Jastrząb R, Graczyk D, Siedlecki P. 2021. Molecular and Cellular Mechanisms Influenced by Postbiotics. int J Mol Sci. 22(24):13475. doi:10.3390/ijms222413475.
  • Garcia-Gonzalez N, Prete R, Battista N, Corsetti A. 2018. Adhesion properties of food-associated lactobacillus plantarum strains on human intestinal epithelial cells and modulation of il-8 release. Front Microbiol. 9: doi:10.3389/fmicb.2018.02392.
  • Schiffrin EJ, Brassart D, Servin AL, Rochat F, Donnet-Hughes A. 1997. Immune modulation of blood leukocytes in humans by lactic acid bacteria: criteria for strain selection. Am J Clin Nutr. 66(2):515S–520S. doi:10.1093/ajcn/66.2.515S.
  • Bernet MF, Brassart D, Neeser JR, Servin AL. 1994. Lactobacillus acidophilus LA 1 binds to cultured human intestinal cell lines and inhibits cell attachment and cell invasion by enterovirulent bacteria. Gut. 35(4):483–489. doi:10.1136/gut.35.4.483.
  • Taverniti V, Stuknyte M, Minuzzo M, Arioli S, De Noni I, Scabiosi C, Cordova ZM, Junttila I, Hämäläinen S, Turpeinen H, et al. 2013. S-Layer Protein Mediates the Stimulatory Effect of Lactobacillus helveticus MIMLh5 on Innate Immunity. Appl Environ Microbiol. 79(4):1221–1231. doi:10.1128/AEM.03056-12.
  • Martino C, Dilmore AH, Burcham ZM, Metcalf JL, Jeste D, Knight R. 2022. Microbiota succession throughout life from the cradle to the grave. Nat Rev Microbiol. 20(12):707–720. doi:10.1038/s41579-022-00768-z.
  • Achi SC, Halami PM. 2019. In Vitro Comparative Analysis of Probiotic and Functional Attributes of Indigenous Isolates of Bifidobacteria. Curr Microbiol. 76(3):304–311. doi:10.1007/s00284-018-1615-9.
  • Codex Alimentarius Commission. 2009 FAO, Weltgesundheitsorganisation, editors. Foods Derived Modern Biotechnol. 2. ed:Rome. Food and Agriculture Organization.
  • Prilassnig M, Wenisch C, Daxboeck F, Feierl G. 2007. Are probiotics detectable in human feces after oral uptake by healthy volunteers? Wien Klin Wochenschr. 119(15–16):456–462. doi:10.1007/s00508-007-0808-1.
  • Sanders ME. 2011. Impact of probiotics on colonizing microbiota of the gut. J Clin Gastroenterol. 45:45. doi:10.1097/MCG.0b013e3181dd1573.
  • Han S, Lu Y, Xie J, Fei Y, Zheng G, Wang Z, Liu J, Lv L, Ling Z, Berglund B, et al. 2021. Probiotic Gastrointestinal Transit and Colonization After Oral Administration: a Long Journey. Front Cell Infect Microbiol. 11:609722. doi:10.3389/fcimb.2021.609722.
  • Sanders ME, Akkermans LMA, Haller D, Hammerman C, Heimbach JT, Hörmannsperger G, Huys G. 2010. Safety assessment of probiotics for human use. Gut Microbes. 1:164–185. doi:10.4161/gmic.1.3.12127.
  • Javanshir N, Hosseini GNG, Sadeghi M, Esmaeili R, Satarikia F, Ahmadian G, Allahyari N. 2021. Evaluation of the Function of Probiotics, Emphasizing the Role of their Binding to the Intestinal Epithelium in the Stability and their Effects on the Immune System. Biol Proced Online. 23(1):23. doi:10.1186/s12575-021-00160-w.
  • Monteagudo-Mera A, Rastall RA, Gibson GR, Charalampopoulos D, Chatzifragkou A. 2019. Adhesion mechanisms mediated by probiotics and prebiotics and their potential impact on human health. Appl Microbiol Biotechnol. 103(16):6463–6472. doi:10.1007/s00253-019-09978-7.
  • Lebeer S, Vanderleyden J, De Keersmaecker SCJ. 2010. Host interactions of probiotic bacterial surface molecules: comparison with commensals and pathogens. Nat Rev Microbiol. 8(3):171–184. doi:10.1038/nrmicro2297.
  • Motherway M O, Zomer A, Leahy SC, Reunanen J, Bottacini F, Claesson MJ, O’Brien F, Flynn K, Casey PG, Moreno Munoz JA, et al. Functional genome analysis of Bifidobacterium breve UCC2003 reveals type IVb tight adherence (Tad) pili as an essential and conserved host-colonization factor. Proceedings of the National Academy of Sciences 2011;108:11217–11222.
  • Kankainen M, Paulin L, Tynkkynen S, von Ossowski I, Reunanen J, Partanen P, Satokari R, Vesterlund S, Hendrickx APA, Lebeer S, et al. Comparative genomic analysis of Lactobacillus rhamnosus GG reveals pili containing a human- mucus binding protein. Proceedings of the National Academy of Sciences 2009; 106:17193–17198.
  • Duranti S, Gaiani F, Mancabelli L, Milani C, Grandi A, Bolchi A, Santoni A, Lugli GA, Ferrario C, Mangifesta M, et al. 2016. Elucidating the gut microbiome of ulcerative colitis: bifidobacteria as novel microbial biomarkers. FEMS Microbiol Ecol. 92(12):fiw191. doi:10.1093/femsec/fiw191.
  • Tytgat HLP, van Teijlingen NH, Sullan RMA, Douillard FP, Rasinkangas P, Messing M, Reunanen J, Satokari R, Vanderleyden J, Dufrêne YF, et al. 2016. Probiotic Gut Microbiota Isolate Interacts with Dendritic Cells via Glycosylated Heterotrimeric Pili. PLOS ONE. 11(3):e0151824. doi:10.1371/journal.pone.0151824.
  • Kobatake E, Kabuki T. S-Layer Protein of Lactobacillus helveticus SBT2171 Promotes Human β-Defensin 2 Expression via TLR2–JNK Signaling. Front Microbiol. 2019;10. doi:10.3389/fmicb.2019.00010.
  • Rong J, Zheng H, Liu M, Hu X, Wang T, Zhang X, Jin F, Wang L, Garin B, Breurec S. 2015. Probiotic and anti-inflammatory attributes of an isolate Lactobacillus helveticus NS8 from Mongolian fermented koumiss. BMC Microbiol. 15:15. doi:10.1186/s12866-015-0348-1.
  • Xiao L, Gong C, Ding Y, Ding G, Xu X, Deng C, Ze X, Malard P, Ben X. 2019. Probiotics maintain intestinal secretory immunoglobulin A levels in healthy formula-fed infants: a randomised, double-blind, placebo-controlled study. Benef Microbes. 10(7):729–739. doi:10.3920/BM2019.0025.
  • Konstantinov SR, Smidt H, de Vos WM, Bruijns SCM, Singh SK, Valence F, Molle D, Lortal S, Altermann E, Klaenhammer TR, et al. 2008. S layer protein A of Lactobacillus acidophilus NCFM regulates immature dendritic cell and T cell functions. Proc Natl Acad Sci USA. 105(49):19474–19479. doi:10.1073/pnas.0810305105.
  • Johnson BR, O’Flaherty S, Goh YJ, Carroll I, Barrangou R, Klaenhammer TR. 2017. The S-layer Associated Serine Protease Homolog PrtX Impacts Cell Surface-Mediated Microbe-Host Interactions of Lactobacillus acidophilus NCFM. Front Microbiol. 8:8. doi:10.3389/fmicb.2017.00008.
  • Martínez MG, Prado Acosta M, Candurra NA, Ruzal SM. 2012. S-layer proteins of Lactobacillus acidophilus inhibits JUNV infection. Biochem Biophys Res Commun. 422(4):590–595. doi:10.1016/j.bbrc.2012.05.031.
  • Ruas-Madiedo P, Gueimonde M, Margolles A, de Los REYES-GAVILÁN CG, Salminen S. 2006. Exopolysaccharides Produced by Probiotic Strains Modify the Adhesion of Probiotics and Enteropathogens to Human Intestinal Mucus. J Food Prot. 69(8):2011–2015. doi:10.4315/0362-028X-69.8.2011.
  • Allonsius CN, Broek MFL, De Boeck I, Kiekens S, Oerlemans EFM, Kiekens F, Foubert K, Vandenheuvel D, Cos P, Delputte P, et al. 2017. Interplay between Lactobacillus rhamnosus GG and Candida and the involvement of exopolysaccharides. Microb Biotechnol. 10(6):1753–1763. doi:10.1111/1751-7915.12799.
  • Lebeer S, Claes IJJ, Verhoeven TLA, Vanderleyden J, De Keersmaecker SCJ. 2011. Exopolysaccharides of Lactobacillus rhamnosus GG form a protective shield against innate immune factors in the intestine. Microb Biotechnol. 4(3):368–374. doi:10.1111/j.1751-7915.2010.00199.x.
  • Gorreja F, Rush ST, Kasper DL, Meng D, Walker WA. 2019. The developmentally regulated fetal enterocyte gene, ZP4 , mediates anti-inflammation by the symbiotic bacterial surface factor polysaccharide A on Bacteroides fragilis. American J Physiol-Gastrointestinal Liver Physiol. 317(4):G398–407. doi:10.1152/ajpgi.00046.2019.
  • Jiang F, Meng D, Weng M, Zhu W, Wu W, Kasper D, Walker WA. 2017. The symbiotic bacterial surface factor polysaccharide A on Bacteroides fragilis inhibits IL-1β-induced inflammation in human fetal enterocytes via toll receptors 2 and 4. PLOS ONE. 12(3):e0172738. doi:10.1371/journal.pone.0172738.
  • Mazmanian SK, Round JL, Kasper DL. 2008. A microbial symbiosis factor prevents intestinal inflammatory disease. Nature. 453(7195):620–625. doi:10.1038/nature07008.
  • Bloem K, García-Vallejo JJ, Vuist IM, Cobb BA, van Vliet SJ, van Kooyk Y, Cobb BA, van Vliet SJ, van Kooyk Y, van Vliet SJ, et al. Interaction of the Capsular Polysaccharide A from Bacteroides fragilis with DC-SIGN on Human Dendritic Cells is Necessary for Its Processing and Presentation to T Cells. Front Immunol. 2013;4. doi:10.3389/fimmu.2013.00004.
  • Wan F, Wang H, Wang M, Lv J, Zhao M, Zhang H. 2022. Sustained release of Lactobacillus casei cell wall extract can induce a continuous and stable IgA deposition model. J Pathol. 257(3):262–273. doi:10.1002/path.5884.
  • Lai -H-H, Chiu C-H, Kong M-S, Chang C-J, Chen -C-C. 2019. Probiotic Lactobacillus casei: effective for Managing Childhood Diarrhea by Altering Gut Microbiota and Attenuating Fecal Inflammatory Markers. Nutrients. 11(5):1150. doi:10.3390/nu11051150.
  • Saxami G, Ypsilantis P, Sidira M, Simopoulos C, Kourkoutas Y, Galanis A. 2012. Distinct adhesion of probiotic strain Lactobacillus casei ATCC 393 to rat intestinal mucosa. Anaerobe. 18(4):417–420. doi:10.1016/j.anaerobe.2012.04.002.
  • Hsueh H-Y, Yueh P-Y, Yu B, Zhao X, Liu J-R. 2010. Expression of Lactobacillus reuteri Pg4 Collagen-Binding Protein Gene in Lactobacillus casei ATCC 393 Increases Its Adhesion Ability to Caco-2 Cells. J Agric Food Chem. 58(23):12182–12191. doi:10.1021/jf1035756.
  • Mowat AM, Agace WW. 2014. Regional specialization within the intestinal immune system. Nat Rev Immunol. 14(10):667–685. doi:10.1038/nri3738.
  • Caggianiello G, Kleerebezem M, Spano G. 2016. Exopolysaccharides produced by lactic acid bacteria: from health-promoting benefits to stress tolerance mechanisms. Appl Microbiol Biotechnol. 100(9):3877–3886. doi:10.1007/s00253-016-7471-2.
  • Sun Z, Zhang W, Bilige M, Zhang H. 2015. Complete genome sequence of the probiotic Lactobacillus fermentum F-6 isolated from raw milk. J Biotechnol. 194:110–111. doi:10.1016/j.jbiotec.2014.12.010.
  • Nikolic M, López P, Strahinic I, Suárez A, Kojic M, Fernández-García M, Topisirovic L, Golic N, Ruas-Madiedo P. 2012. Characterisation of the exopolysaccharide (EPS)-producing Lactobacillus paraplantarum BGCG11 and its non-EPS producing derivative strains as potential probiotics. Int J Food Microbiol. 158(2):155–162. doi:10.1016/j.ijfoodmicro.2012.07.015.
  • Flemming H-C, Neu TR, Wozniak DJ. 2007. The EPS Matrix: the “House of Biofilm Cells. J Bacteriol. 189(22):7945–7947. doi:10.1128/JB.00858-07.
  • Tortora GJ, Funke BR, Case CL. 2016. Microbiology: an introduction. 12th ed., global ed. Harlow: Pearson;
  • Liong M-T, editor. 2011. Probiotics: biology, genetics, and health aspects. Heidelberg Germany; New York: Springer.
  • Ruas-Madiedo P, Hugenholtz J, Zoon P. 2002. An overview of the functionality of exopolysaccharides produced by lactic acid bacteria. Int Dairy J. 12(2–3):163–171. doi:10.1016/S0958-6946(01)00160-1.
  • Castro-Bravo N, Hidalgo-Cantabrana C, Rodriguez-Carvajal MA, Ruas-Madiedo P, Margolles A. 2017. Gene Replacement and Fluorescent Labeling to Study the Functional Role of Exopolysaccharides in Bifidobacterium animalis subsp. lactis. Front Microbiol. 8:1405. doi:10.3389/fmicb.2017.01405.
  • Yuan L, Chu B, Chen S, Li Y, Liu N, Zhu Y, Zhou D. 2021. Exopolysaccharides from Bifidobacterium animalis Ameliorate Escherichia coli-Induced IPEC-J2 Cell Damage via Inhibiting Apoptosis and Restoring Autophagy. Microorganisms. 9(11):2363. doi:10.3390/microorganisms9112363.
  • Romeo MG, Romeo DM, Trovato L, Oliveri S, Palermo F, Cota F, Betta P. 2011. Role of probiotics in the prevention of the enteric colonization by Candida in preterm newborns: incidence of late-onset sepsis and neurological outcome. J Perinatol. 31(1):63–69. doi:10.1038/jp.2010.57.
  • Manzoni P, Mostert M, Leonessa ML, Priolo C, Farina D, Monetti C, Latino MA, Gomirato G. 2006. Oral Supplementation with Lactobacillus casei Subspecies rhamnosus Prevents Enteric Colonization by Candida Species in Preterm Neonates: a Randomized Study. Clin Infect Dis. 42(12):1735–1742. doi:10.1086/504324.
  • Fanning S, Hall LJ, Cronin M, Zomer A, MacSharry J, Goulding D, Motherway M O, Shanahan F, Nally K, Dougan G, et al. Bifidobacterial surface-exopolysaccharide facilitates commensal-host interaction through immune modulation and pathogen protection. Proceedings of the National Academy of Sciences 2012; 109:2108–2113.
  • Collins JW, Keeney KM, Crepin VF, Rathinam VAK, Fitzgerald KA, Finlay BB, Frankel G. 2014. Citrobacter rodentium: infection, inflammation and the microbiota. Nat Rev Microbiol. 12(9):612–623. doi:10.1038/nrmicro3315.
  • Korpela K, Salonen A, Vepsäläinen O, Suomalainen M, Kolmeder C, Varjosalo M, Miettinen S, Kukkonen K, Savilahti E, Kuitunen M, et al. 2018. Probiotic supplementation restores normal microbiota composition and function in antibiotic-treated and in caesarean-born infants. Microbiome. 6. cited 2020 Mar 11. Available from. https://microbiomejournal.biomedcentral.com/articles/10.1186/s40168-018-0567-4.
  • Costeloe K, Bowler U, Brocklehurst P, Hardy P, Heal P, Juszczak E, King A, Panton N, Stacey F, Whiley A, et al. 2016. A randomised controlled trial of the probiotic Bifidobacterium breve BBG-001 in preterm babies to prevent sepsis, necrotising enterocolitis and death: the Probiotics in Preterm infantS (PiPS) trial. Health Technol Assess (Rockv). 20(66):1–194. doi:10.3310/hta20660.
  • Rich BS, Dolgin SE. 2017. Necrotizing Enterocolitis. Pediatr Rev. 38(12):552–559. doi:10.1542/pir.2017-0002.
  • Håkansson Å, Andrén Aronsson C, Brundin C, Oscarsson E, Molin G, Agardh D. 2019. Effects of Lactobacillus plantarum and Lactobacillus paracasei on the Peripheral Immune Response in Children with Celiac Disease Autoimmunity: a Randomized, Double-Blind, Placebo-Controlled Clinical Trial. Nutrients. 11(8):1925. doi:10.3390/nu11081925.
  • Ahrné N, Jeppsson A, Wold M. 1998. The normal Lactobacillus flora of healthy human rectal and oral mucosa. J Appl Microbiol. 85(1):88–94. doi:10.1046/j.1365-2672.1998.00480.x.
  • Adlerberth I, Ahrne S, Johansson ML, Molin G, Hanson LA, Wold AE. 1996. A mannose-specific adherence mechanism in Lactobacillus plantarum conferring binding to the human colonic cell line HT-29. Appl Environ Microbiol. 62(7):1753–1763. doi:10.1128/aem.62.7.2244-2251.1996.
  • Lazou Ahrén I, Berggren A, Teixeira C, Martinsson Niskanen T, Larsson N. 2020. Evaluation of the efficacy of Lactobacillus plantarum HEAL9 and Lactobacillus paracasei 8700:2 on aspects of common cold infections in children attending day care: a randomised, double-blind, placebo-controlled clinical study. Eur J Nutr. 59(1):409–417. doi:10.1007/s00394-019-02137-8.
  • Glenting J, Beck HC, Vrang A, Riemann H, Ravn P, Hansen AM, Antonsson M, Ahrné S, Israelsen H, Madsen S. 2013. Anchorless surface associated glycolytic enzymes from Lactobacillus plantarum 299v bind to epithelial cells and extracellular matrix proteins. Microbiol Res. 168(5):245–253. doi:10.1016/j.micres.2013.01.003.
  • Kusumo PD, Bela B, Wibowo H, Munasir Z, Surono IS. 2019. Lactobacillus plantarum IS-10506 supplementation increases faecal sIgA and immune response in children younger than two years. Benef Microbes. 10(3):245–252. doi:10.3920/BM2017.0178.
  • Surono IS, Martono PD, Kameo S, Suradji EW, Koyama H. 2014. Effect of probiotic L. plantarum IS-10506 and zinc supplementation on humoral immune response and zinc status of Indonesian pre-school children. J Trace Elem Med Biol. 28(4):465–469. doi:10.1016/j.jtemb.2014.07.009.
  • Sudha MR, Jayanthi N, Aasin M, Dhanashri RD, Anirudh T. 2018. Efficacy of Bacillus coagulans Unique IS2 in treatment of irritable bowel syndrome in children: a double blind, randomised placebo controlled study. Benef Microbes. 9(4):563–572. doi:10.3920/BM2017.0129.
  • Madempudi RS, Ahire JJ, Neelamraju J, Tripathi A, Nanal S. Randomized clinical trial: the effect of probiotic Bacillus coagulans Unique IS2 vs. placebo on the symptoms management of irritable bowel syndrome in adults. Sci Rep. 2019; 9.[cited 2021 Mar 1] Available from http://www.nature.com/articles/s41598-019-48554-x
  • Konuray Altun G, Erginkaya Z. 2021. Identification and characterization of Bacillus coagulans strains for probiotic activity and safety. LWT. 151:112233. doi:10.1016/j.lwt.2021.112233.
  • Yahav S, Berkovich Z, Ostrov I, Reifen R, Shemesh M. 2018. Encapsulation of beneficial probiotic bacteria in extracellular matrix from biofilm-forming Bacillus subtilis. Artif Cells Nanomed Biotechnol. 46(sup2):974–982. doi:10.1080/21691401.2018.1476373.
  • Arnaouteli S, Bamford NC, Stanley-Wall NR, Át K. 2021. Bacillus subtilis biofilm formation and social interactions. Nat Rev Microbiol. 19(9):600–614. doi:10.1038/s41579-021-00540-9.
  • Maheshwari A, Schelonka RL, Dimmitt RA, Carlo WA, Munoz-Hernandez B, Das A, McDonald SA, Thorsen P, Skogstrand K, Hougaard DM, et al. 2014. Cytokines associated with necrotizing enterocolitis in extremely-low-birth-weight infants. Pediatr Res. 76(1):100–108. doi:10.1038/pr.2014.48.
  • Krinos CM, Coyne MJ, Weinacht KG, Tzianabos AO, Kasper DL, Comstock LE. 2001. Extensive surface diversity of a commensal microorganism by multiple DNA inversions. Nature. 414(6863):555–558. doi:10.1038/35107092.
  • Mazmanian SK, Kasper DL. 2006. The love–hate relationship between bacterial polysaccharides and the host immune system. Nat Rev Immunol. 6(11):849–858. doi:10.1038/nri1956.
  • Nishiyama K, Ueno S, Sugiyama M, Yamamoto Y, Mukai T. 2016. Lactobacillus rhamnosus GG SpaC pilin subunit binds to the carbohydrate moieties of intestinal glycoconjugates. Animal Sci J. 87(6):809–815. doi:10.1111/asj.12491.
  • Mishra AK, Megta AK, Palva A, von Ossowski I, Krishnan V. 2017. Crystallization and X-ray diffraction analysis of SpaE, a basal pilus protein from the gut-adapted Lactobacillus rhamnosus GG. Acta Crystallogr Sect F Struct Biol Commun. 73(6):321–327. doi:10.1107/S2053230X17006963.
  • Ardita CS, Mercante JW, Kwon YM, Luo L, Crawford ME, Powell DN, Jones RM, Neish AS. 2014. Epithelial Adhesion Mediated by Pilin SpaC Is Required for Lactobacillus rhamnosus GG-Induced Cellular Responses. Appl Environ Microbiol. 80(16):5068–5077. doi:10.1128/AEM.01039-14.
  • Tytgat HLP, Douillard FP, Reunanen J, Rasinkangas P, Hendrickx APA, Laine PK, Paulin L, Satokari R, de Vos WM. 2016. Lactobacillus rhamnosus GG Outcompetes Enterococcus faecium via Mucus-Binding Pili: evidence for a Novel and Heterospecific Probiotic Mechanism. Appl Environ Microbiol. 82(19):5756–5762. doi:10.1128/AEM.01243-16.
  • Sullan RMA, Beaussart A, Tripathi P, Derclaye S, El-Kirat-Chatel S, Li JK, Schneider Y-J, Vanderleyden J, Lebeer S, Dufrêne YF. 2014. Single-cell force spectroscopy of pili-mediated adhesion. Nanoscale. 6(2):1134–1143. doi:10.1039/C3NR05462D.
  • Douillard FP, Rasinkangas P, Bhattacharjee A, Palva A, de Vos WM. 2016. The N-Terminal GYPSY Motif Is Required for Pilin-Specific Sortase SrtC1 Functionality in Lactobacillus rhamnosus Strain GG. PLOS ONE. 11(4):e0153373. doi:10.1371/journal.pone.0153373.
  • Turroni F, Serafini F, Foroni E, Duranti S, Motherway M O, Taverniti V, Mangifesta M, Milani C, Viappiani A, Roversi T, et al. Role of sortase-dependent pili of Bifidobacterium bifidum PRL2010 in modulating bacterium-host interactions. Proceedings of the National Academy of Sciences. 2013;110:11151–11156.
  • Oxaran V, Ledue-Clier F, Dieye Y, Herry J-M, Péchoux C, Meylheuc T, Briandet R, Juillard V, Piard J-C. 2012. Pilus Biogenesis in Lactococcus lactis: molecular Characterization and Role in Aggregation and Biofilm Formation. PLoS ONE. 7(12):e50989. doi:10.1371/journal.pone.0050989.
  • Meyrand M, Guillot A, Goin M, Furlan S, Armalyte J, Kulakauskas S, Cortes-Perez NG, Thomas G, Chat S, Péchoux C, et al. 2013. Surface Proteome Analysis of a Natural Isolate of Lactococcus lactis Reveals the Presence of Pili Able to Bind Human Intestinal Epithelial Cells. Mol Cell Proteomics. 12(12):3935–3947. doi:10.1074/mcp.M113.029066.
  • Yu X, Jaatinen A, Rintahaka J, Hynönen U, Lyytinen O, Kant R, Åvall-Jääskeläinen S, von Ossowski I, Palva A. 2015. Human gut-commensalic lactobacillus ruminis ATCC 25644 displays sortase-assembled surface piliation Phenotypic Characterization of Its Fimbrial Operon through in Silico Predictive Analysis and Recombinant Expression in Lactococcus Lactis. PLOS ONE. 10:e0145718.
  • Aleksandrzak-Piekarczyk T, Koryszewska-Bagińska A, Grynberg M, Nowak A, Cukrowska B, Kozakova H, Bardowski J. 2016. Genomic and functional characterization of the unusual pLOCK 0919 plasmid harboring the spaCBA pili cluster in lactobacillus casei LOCK 0919. Genome Biol Evol. 8(1):202–217. doi:10.1093/gbe/evv247.
  • Krishnan V, Chaurasia P, Kant A. Pili in Probiotic Bacteria [Internet]. In: Rao V, Rao LG, editors. Probiotics and Prebiotics in Human Nutrition and Health. InTech; 2016 [cited 2017 Aug 24]. Available from: http://www.intechopen.com/books/probiotics-and-prebiotics-in-human-nutrition-and-health/pili-in-probiotic-bacteria
  • von Ossowski I, Reunanen J, Satokari R, Vesterlund S, Kankainen M, Huhtinen H, Tynkkynen S, Salminen S, de Vos WM, Palva A. 2010. Mucosal adhesion properties of the probiotic lactobacillus rhamnosus GG SpaCBA and SpaFED Pilin Subunits. Appl Environ Microbiol. 76(7):2049–2057. doi:10.1128/AEM.01958-09.
  • Hendrickx APA, Budzik JM, S-Y O, Schneewind O. 2011. Architects at the bacterial surface — sortases and the assembly of pili with isopeptide bonds. Nat Rev Microbiol. 9(3):166–176. doi:10.1038/nrmicro2520.
  • von Ossowski I. 2017. Novel molecular insights about lactobacillar sortase-dependent piliation. Int J Mol Sci. 18(7):1551. doi:10.3390/ijms18071551.
  • Bang M, Yong -C-C, Ko H-J, Choi I-G, Oh S. 2018. Transcriptional response and enhanced intestinal adhesion ability of lactobacillus rhamnosus GG after acid stress. J Microbiol Biotechnol. 28(10):1604–1613. doi:10.4014/jmb.1807.07033.
  • Solano-Aguilar G, Molokin A, Botelho C, Fiorino A-M, Vinyard B, Li R, Chen C, Urban J, Dawson H, Andreyeva I, et al. 2016. Transcriptomic profile of whole blood cells from elderly subjects fed probiotic bacteria lactobacillus rhamnosus GG ATCC 53103 (LGG) in a phase i open label study. PLOS ONE. 11(2):e0147426. doi:10.1371/journal.pone.0147426.
  • Coombes JL, Powrie F. 2008. Dendritic cells in intestinal immune regulation. Nat Rev Immunol. 8(6):435–446. doi:10.1038/nri2335.
  • Baradaran Ghavami S, Asadzadeh Aghdaei H, Sorrentino D, Shahrokh S, Farmani M, Ashrafian F, Dore MP, Keshavarz Azizi Raftar S, Mobin Khoramjoo S, Zali MR. 2021. Probiotic-induced tolerogenic dendritic cells: a novel therapy for inflammatory bowel disease? IJMS. 22(15):8274. doi:10.3390/ijms22158274.
  • Han X, Lee A, Huang S, Gao J, Spence JR, Owyang C. 2019. Lactobacillus rhamnosus GG prevents epithelial barrier dysfunction induced by interferon-gamma and fecal supernatants from irritable bowel syndrome patients in human intestinal enteroids and colonoids. Gut Microbes. 10(1):59–76. doi:10.1080/19490976.2018.1479625.
  • Orlando A, Linsalata M, Notarnicola M, Tutino V, Russo F. 2014. Lactobacillus GG restoration of the gliadin induced epithelial barrier disruption: the role of cellular polyamines. BMC Microbiol. 14(1):19. doi:10.1186/1471-2180-14-19.
  • Lebeer S, Claes I, Tytgat HLP, Verhoeven TLA, Marien E, von Ossowski I, Reunanen J, Palva A, de Vos WM, De Keersmaecker SCJ, et al. 2012. Functional analysis of lactobacillus rhamnosus GG pili in relation to adhesion and immunomodulatory interactions with intestinal epithelial cells. Appl Environ Microbiol. 78(1):185–193. doi:10.1128/AEM.06192-11.
  • Costabile A, Bergillos-Meca T, Rasinkangas P, Korpela K, de Vos WM, Gibson GR. 2017. Effects of soluble corn fiber alone or in synbiotic combination with lactobacillus rhamnosus GG and the pilus-deficient derivative GG-PB12 on fecal microbiota, metabolism, and markers of immune function: a randomized, double-blind, placebo-controlled, crossover study in healthy elderly (saimes study). Front Immunol. 8(l). doi:10.3389/fimmu.2017.01443.
  • Domínguez Rubio AP, Martínez JH, Martínez Casillas DC, Coluccio Leskow F, Piuri M, Pérez OE. Lactobacillus casei BL23 produces microvesicles carrying proteins that have been associated with its probiotic effect. Front Microbiol. 2017;8. doi:10.3389/fmicb.2017.01783.
  • Garrido D, Kim JH, German JB, Raybould HE, Mills DA. 2011. Oligosaccharide binding proteins from bifidobacterium longum subsp. infantis reveal a preference for host glycans. PLoS ONE. 6(3):e17315. doi:10.1371/journal.pone.0017315.
  • Plummer EL, Bulach DM, Murray GL, Jacobs SE, Tabrizi SN, Garland SM for the ProPrems Study Group. 2018. Gut microbiota of preterm infants supplemented with probiotics: sub-study of the ProPrems trial. BMC Microbiol. 18:18. 10.1186/s12866-018-1161-4.
  • Hynönen U, Palva A. 2013. Lactobacillus surface layer proteins: structure, function and applications. Appl Microbiol Biotechnol. 97(12):5225–5243. doi:10.1007/s00253-013-4962-2.
  • Meng J, Zhu X, Gao S-M, Zhang Q-X, Sun Z, Lu -R-R. 2014. Characterization of surface layer proteins and its role in probiotic properties of three Lactobacillus strains. Int J Biol Macromol. 65:110–114. doi:10.1016/j.ijbiomac.2014.01.024.
  • Klotz C, Goh YJ, O’Flaherty S, Barrangou R. 2020. S-layer associated proteins contribute to the adhesive and immunomodulatory properties of Lactobacillus acidophilus NCFM. BMC Microbiol. 20(1):248. doi:10.1186/s12866-020-01908-2.
  • Guo Y, Li X, Yang Y, Wu Z, Zeng X, Nadari F, Pan D. 2018. Molecular cloning, expression and adhesion analysis of silent slpB of Lactobacillus acidophilus NCFM. AMB Expr. 8(1):103. doi:10.1186/s13568-018-0631-2.
  • Foligne B, Guo J, Chan EWC, Chen S, Zeng Z. 2007. Correlation between in vitro and in vivo immunomodulatory properties of lactic acid bacteria. World J Gastroenterol. 13(2):236. doi:10.3748/wjg.v13.i2.236.
  • Suzuki S, Yokota K, Igimi S, Kajikawa A. 2019. Comparative analysis of immunological properties of S-layer proteins isolated from Lactobacillus strains. Microbiology. 165(2):188–196. doi:10.1099/mic.0.000766.
  • Wang R, Jiang L, Zhang M, Zhao L, Hao Y, Guo H, Sang Y, Zhang H, Ren F. 2017. The adhesion of lactobacillus salivarius REN to a human intestinal epithelial cell line requires s-layer proteins. Sci Rep. 7(1):44029. doi:10.1038/srep44029.
  • Salzillo M, Vastano V, Capri U, Muscariello L, Sacco M, Marasco R. 2015. Identification and characterization of enolase as a collagen-binding protein in Lactobacillus plantarum. J Basic Microbiol. 55(7):890–897. doi:10.1002/jobm.201400942.
  • Kumar R, Grover S, Batish VK. 2011. Molecular identification and typing of putative probiotic indigenous lactobacillus plantarum strain Lp91 of human origin by specific primed-PCR assays. Probiotics Antimicro Prot. 3(3–4):186–193. doi:10.1007/s12602-011-9083-6.
  • Wei C, Luo K, Wang M, Li Y, Pan M, Xie Y, Qin G, Liu Y, Li L, Liu Q, et al. 2022. Evaluation of potential probiotic properties of a strain of lactobacillus plantarum for shrimp farming: from beneficial functions to safety assessment. Front Microbiol. 13:854131. doi:10.3389/fmicb.2022.854131.
  • Yadav AK, Tyagi A, Kaushik JK, Saklani AC, Grover S, Batish VK. 2013. Role of surface layer collagen binding protein from indigenous Lactobacillus plantarum 91 in adhesion and its anti-adhesion potential against gut pathogen. Microbiol Res. 168(10):639–645. doi:10.1016/j.micres.2013.05.003.
  • Chandran A, Duary RK, Grover S, Batish VK. 2013. Relative expression of bacterial and host specific genes associated with probiotic survival and viability in the mice gut fed with Lactobacillus plantarum Lp91. Microbiol Res. 168(9):555–562. doi:10.1016/j.micres.2013.04.010.
  • Devi SM, Halami PM. 2017. Diversity and evolutionary aspects of mucin binding (MucBP) domain repeats among Lactobacillus plantarum group strains through comparative genetic analysis. Syst Appl Microbiol. 40(4):237–244. doi:10.1016/j.syapm.2017.03.005.
  • MacKenzie DA, Tailford LE, Hemmings AM, Juge N. 2009. Crystal structure of a mucus-binding protein repeat reveals an unexpected functional immunoglobulin binding activity. J Biol Chem. 284(47):32444–32453. doi:10.1074/jbc.M109.040907.
  • Roos S, Jonsson H. 2002. A high-molecular-mass cell-surface protein from Lactobacillus reuteri 1063 adheres to mucus components The GenBank accession number for the sequence reported in this paper is AF120104. Microbiology. 148(2):433–442. doi:10.1099/00221287-148-2-433.
  • Jensen H, Roos S, Jonsson H, Rud I, Grimmer S, van Pijkeren J-P, Britton RA, Axelsson L. 2014. Role of Lactobacillus reuteri cell and mucus-binding protein A (CmbA) in adhesion to intestinal epithelial cells and mucus in vitro. Microbiology. 160(4):671–681. doi:10.1099/mic.0.073551-0.
  • Etzold S, Kober OI, MacKenzie DA, Tailford LE, Gunning AP, Walshaw J, Hemmings AM, Juge N. 2014. Structural basis for adaptation of Lactobacilli to gastrointestinal mucus. Environ Microbiol. 16(3):888–903. doi:10.1111/1462-2920.12377.
  • Bene KP, Kavanaugh DW, Leclaire C, Gunning AP, MacKenzie DA, Wittmann A, Young ID, Kawasaki N, Rajnavolgyi E, Juge N. 2017. Lactobacillus reuteri surface mucus adhesins upregulate inflammatory responses through interactions with innate C-type lectin receptors. Front Microbiol. 8:8.
  • Walsham ADS, MacKenzie DA, Cook V, Wemyss-Holden S, Hews CL, Juge N, Schüller S. 2016. Lactobacillus reuteri inhibition of enteropathogenic escherichia coli adherence to human intestinal epithelium. Front Microbiol. 7: doi:10.3389/fmicb.2016.00244.
  • Miyoshi Y, Okada S, Uchimura T, Satoh E. 2006. A mucus adhesion promoting protein, mapa, mediates the adhesion of lactobacillus reuteri to Caco-2 human intestinal epithelial cells. Biosci Biotechnol Biochem. 70(7):1622–1628. doi:10.1271/bbb.50688.
  • Bøhle LA, Brede DA, Diep DB, Holo H, Nes IF. 2010. Specific degradation of the mucus adhesion-promoting protein (mapA) of lactobacillus reuteri to an antimicrobial peptide. Appl Environ Microbiol. 76(21):7306–7309. doi:10.1128/AEM.01423-10.
  • Sung V, D’Amico F, Cabana MD, Chau K, Koren G, Savino F, Szajewska H, Deshpande G, Dupont C, Indrio F, et al. 2018. Lactobacillus reuteri to treat infant colic: a meta-analysis. Pediatrics. 141(1):e20171811. doi:10.1542/peds.2017-1811.
  • Maragkoudaki M, Chouliaras G, Moutafi A, Thomas A, Orfanakou A, Papadopoulou A. 2018. Efficacy of an oral rehydration solution enriched with lactobacillus reuteri DSM 17938 and zinc in the management of acute diarrhoea in infants: a randomized, double-blind, placebo-controlled trial. Nutrients. 10(9):1189. doi:10.3390/nu10091189.
  • Wegner A, Banaszkiewicz A, Kierkus J, Landowski P, Korlatowicz-Bilar A, Wiecek S, Kwiecien J, Gawronska A, Dembinski L, Czaja-Bulsa G, et al. 2018. The effectiveness of lactobacillus reuteri DSM 17938 as an adjunct to macrogol in the treatment of functional constipation in children. A randomized, double-blind, placebo-controlled, multicentre trial. Clin Res Hepatol Gastroenterol. 42(5):494–500. doi:10.1016/j.clinre.2018.03.008.
  • Jadrešin O, Sila S, Trivić I, Mišak Z, Hojsak I, Kolaček S. 2018. Lack of benefit of lactobacillus reuteri DSM 17938 as an addition to the treatment of functional constipation. J Pediatr Gastroenterol Nutr. 67(6):763–766. doi:10.1097/MPG.0000000000002134.
  • García Contreras A, Vásquez Garibay E, Sánchez Ramírez C, Fafutis Morris M, Delgado Rizo V. 2020. Lactobacillus reuteri DSM 17938 and agave inulin in children with cerebral palsy and chronic constipation: a double-blind randomized placebo controlled clinical trial. Nutrients. 12(10):2971. doi:10.3390/nu12102971.
  • Singh TP, Tehri N, Kaur G, Malik RK. 2021. Cell surface and extracellular proteins of potentially probiotic Lactobacillus reuteri as an effective mediator to regulate intestinal epithelial barrier function. Arch Microbiol. 203(6):3219–3228. [[cited 2021 May 22]; Available from]. http://link.springer.com/10.1007/s00203-021-02318-2.
  • Singh KS, Choudhary R, Bisht S, Grover S, Kumar S, Mohanty AK, Kaushik JK. 2017. Expression of recombinant truncated domains of mucus-binding (Mub) protein of Lactobacillus plantarum in soluble and biologically active form. Protein Expr Purif. 135:54–60. doi:10.1016/j.pep.2017.04.015.
  • Singh KS, Kumar S, Mohanty AK, Grover S, Kaushik JK. 2018. Mechanistic insights into the host-microbe interaction and pathogen exclusion mediated by the Mucus-binding protein of Lactobacillus plantarum. Sci Rep. 8(1):14198. doi:10.1038/s41598-018-32417-y.
  • Ramiah K, van Reenen CA, Dicks LMT. 2007. Expression of the mucus adhesion genes Mub and MapA, adhesion-like factor EF-Tu and bacteriocin gene plaA of lactobacillus plantarum 423, monitored with real-time PCR. Int J Food Microbiol. 116(3):405–409. doi:10.1016/j.ijfoodmicro.2007.02.011.
  • Bettelheim KA, Goldwater PN, Bancu I, Lauzurica-Valdemoros R, Borràs FE. 2015. Escherichia coli and sudden infant death syndrome. Front Immunol. 6:6. doi:10.3389/fimmu.2015.00006.
  • Khatri I, Sharma G, Subramanian S, Liu X, Dai F. 2019. Composite genome sequence of bacillus clausii, a probiotic commercially available as enterogermina®, and insights into its probiotic properties. BMC Microbiol. 19(1):19. doi:10.1186/s12866-018-1385-3.
  • Sudha MR, Jayanthi N, Pandey DC, Verma AK. 2019. Bacillus clausii UBBC-07 reduces severity of diarrhoea in children under 5 years of age: a double blind placebo controlled study. Benef Microbes. 10(2):149–154. doi:10.3920/BM2018.0094.
  • Lehri B, Seddon AM, Karlyshev AV. 2017. Potential probiotic-associated traits revealed from completed high quality genome sequence of Lactobacillus fermentum 3872. Stand in Genomic Sci. 12(1):19. doi:10.1186/s40793-017-0228-4.
  • Gorreja F. 2019. Gene expression changes as predictors of the immune-modulatory effects of probiotics: towards a better understanding of strain-disease specific interactions. NFS J. 14–15:1–5. doi:10.1016/j.nfs.2019.02.001.
  • Horvath A, Leber B, Schmerboeck B, Tawdrous M, Zettel G, Hartl A, Madl T, Stryeck S, Fuchs D, Lemesch S, et al. 2016. Randomised clinical trial: the effects of a multispecies probiotic vs. placebo on innate immune function, bacterial translocation and gut permeability in patients with cirrhosis. Aliment Pharmacol Ther. 44(9):926–935. doi:10.1111/apt.13788.
  • Ganguli K, Meng D, Rautava S, Lu L, Walker WA, Nanthakumar N. 2013. Probiotics prevent necrotizing enterocolitis by modulating enterocyte genes that regulate innate immune-mediated inflammation. American J Physiol-Gastrointestinal Liver Physiol. 304(2):G132–41. doi:10.1152/ajpgi.00142.2012.
  • Hecht AL, Casterline BW, Earley ZM, Goo YA, Goodlett DR, Bubeck Wardenburg J. 2016. Strain competition restricts colonization of an enteric pathogen and prevents colitis. EMBO Rep. 17(9):1281–1291. doi:10.15252/embr.201642282.
  • Casterline BW, Hecht AL, Choi VM, Bubeck Wardenburg J. 2017. The Bacteroides fragilis pathogenicity island links virulence and strain competition. Gut Microbes. 8(4):374–383. doi:10.1080/19490976.2017.1290758.
  • He Y, Xu X, Zhang F, Xu D, Liu Z, Tao X, Wei H. 2019. Anti-adhesion of probiotic Enterococcus faecium WEFA23 against five pathogens and the beneficial effect of its S-layer proteins against Listeria monocytogenes. Can J Microbiol. 65(3):175–184. doi:10.1139/cjm-2018-0031.
  • Koo OK, Amalaradjou MAR, Bhunia AK, Ho PL. 2012. Recombinant Probiotic Expressing Listeria Adhesion Protein Attenuates Listeria monocytogenes Virulence In Vitro. PLoS ONE. 7(1):e29277. doi:10.1371/journal.pone.0029277.
  • Archer AC, Kurrey NK, Halami PM. 2018. In vitro adhesion and anti-inflammatory properties of native Lactobacillus fermentum and Lactobacillus delbrueckii spp. J Appl Microbiol. 125(1):243–256. doi:10.1111/jam.13757.
  • Konieczna C, Słodziński M, Schmidt MT. 2018. Exopolysaccharides produced by lactobacillus rhamnosus KL 53A and lactobacillus casei fyos affect their adhesion to enterocytes. Polish J Microbiol. 67(3):273–281. doi:10.21307/pjm-2018-032.
  • Nishiyama K, Yamamoto Y, Sugiyama M, Takaki T, Urashima T, Fukiya S, Yokota A, Okada N, Mukai T. Bifidobacterium bifidum extracellular sialidase enhances adhesion to the mucosal surface and supports carbohydrate assimilation. mBio. 2017;8(5):e00928-17. doi:10.1128/mBio.00928-17.
  • Lortal S, Van Heijenoort J, Gruber K, Sleytr UB. 1992. S-layer of Lactobacillus helveticus ATCC 12046: isolation, chemical characterization and re-formation after extraction with lithium chloride. J Gen Microbiol. 138(3):611–618. doi:10.1099/00221287-138-3-611.
  • Andrés J D, Manzano S, García C, Rodríguez JM, Espinosa-Martos I, Jiménez E. 2018. Modulatory effect of three probiotic strains on infants’ gut microbial composition and immunological parameters on a placebo-controlled, double-blind, randomised study. Benef Microbes. 9(4):573–584. doi:10.3920/BM2017.0132.
  • Dias ML, O’Connor KM, Dempsey EM, O’Halloran KD, McDonald FB. 2021. Targeting the Toll-like receptor pathway as a therapeutic strategy for neonatal infection. American J Physiol-Regul Integr Comp Physiol. 321(6):R879–902. doi:10.1152/ajpregu.00307.2020.
  • Freedman SB, Williamson-Urquhart S, Farion KJ, Gouin S, Willan AR, Poonai N, Hurley K, Sherman PM, Finkelstein Y, Lee BE, et al. 2018. Multicenter Trial of a Combination Probiotic for Children with Gastroenteritis. New England J Med. 379(21):2015–2026. doi:10.1056/NEJMoa1802597.
  • Lu Y, Han S, Zhang S, Wang K, Lv L, McClements DJ, Xiao H, Berglund B, Yao M, Li L. 2022. The role of probiotic exopolysaccharides in adhesion to mucin in different gastrointestinal conditions. Current Res Food Sci. 5:581–589. doi:10.1016/j.crfs.2022.02.015.
  • Kumar S, Bansal A, Chakrabarti A, Singhi S. 2013. Evaluation of efficacy of probiotics in prevention of candida colonization in a PICU—A randomized controlled trial*. Crit Care Med. 41(2):565–572. doi:10.1097/CCM.0b013e31826a409c.
  • Bunesova V, Lacroix C, Schwab C. 2016. Fucosyllactose and L-fucose utilization of infant bifidobacterium longum and bifidobacterium kashiwanohense. BMC Microbiol. 16(1). doi:10.1186/s12866-016-0867-4.
  • Turroni F, Duranti S, Bottacini F, Guglielmetti S, Van Sinderen D, Ventura M. Bifidobacterium bifidum as an example of a specialized human gut commensal. Front Microbiol. 2014;5. doi:10.3389/fmicb.2014.00437.
  • Turroni F, Bottacini F, Foroni E, Mulder I, Kim J-H, Zomer A, Sanchez B, Bidossi A, Ferrarini A, Giubellini V, et al. Genome analysis of bifidobacterium bifidum PRL2010 reveals metabolic pathways for host-derived glycan foraging. Proceedings of the National Academy of Sciences. 2010;107:19514–19519.
  • Bermudez-Brito M, Plaza-Díaz J, Muñoz-Quezada S, Gómez-Llorente C, Gil A. 2012. Probiotic mechanisms of action. Ann Nutr Metab. 61(2):160–174. doi:10.1159/000342079.
  • Alizadeh Behbahani B, Noshad M, Falah F. 2019. Inhibition of Escherichia coli adhesion to human intestinal Caco-2 cells by probiotic candidate Lactobacillus plantarum strain L15. Microb Pathog. 136:103677. doi:10.1016/j.micpath.2019.103677.
  • Mohanty D, Panda S, Kumar S, Ray P. 2019. In vitro evaluation of adherence and anti-infective property of probiotic Lactobacillus plantarum DM 69 against Salmonella enterica. Microb Pathog. 126:212–217. doi:10.1016/j.micpath.2018.11.014.
  • Gerasimov S, Gantzel J, Dementieva N, Schevchenko O, Tsitsura O, Guta N, Bobyk V, Kaprus V. 2018. Role of lactobacillus rhamnosus (floraActiveTM) 19070-2 and lactobacillus reuteri (floraActiveTM) 12246 in infant colic: a randomized dietary study. Nutrients. 10(12):1975. doi:10.3390/nu10121975.
  • Rhoads JM, Fatheree NY, Norori J, Liu Y, Lucke JF, Tyson JE, Ferris MJ. 2009. Altered fecal microflora and increased fecal calprotectin in infants with colic. J Pediatr. 155(6):823–828.e1. doi:10.1016/j.jpeds.2009.05.012.
  • Oh B, Kim B-S, Kim JW, Kim JS, Koh S-J, Kim BG, Lee KL, Chun J. 2016. The effect of probiotics on gut microbiota during the helicobacter pylori eradication: randomized controlled trial. Helicobacter. 21(3):165–174. doi:10.1111/hel.12270.
  • Park M, Kwon B, Ku S, Ji G. 2017. The efficacy of bifidobacterium longum BORI and lactobacillus acidophilus AD031 probiotic treatment in infants with rotavirus infection. Nutrients. 9(8):887. doi:10.3390/nu9080887.
  • Kanic Z, Micetic Turk D, Burja S, Kanic V, Dinevski D. 2015. Influence of a combination of probiotics on bacterial infections in very low birthweight newborns. Wien Klin Wochenschr. 127(S5):210–215. doi:10.1007/s00508-015-0845-0.
  • Awad H, Mokhtar G, Imam SS, Gad GI, Hafez H, Aboushady N. 2010. Comparison between killed and living probiotic usage versus placebo for the prevention of necrotizing enterocolitis and sepsis in neonates. Pakistan J Biol Sci. 13(6):253–262. doi:10.3923/pjbs.2010.253.262.
  • Reyman M, van Houten MA, Watson RL, Chu MLJN, Arp K, de Waal WJ, Schiering I, Plötz FB, Willems RJL, van Schaik W, et al. 2022. Effects of early-life antibiotics on the developing infant gut microbiome and resistome: a randomized trial. Nat Commun. 13(1):893. doi:10.1038/s41467-022-28525-z.
  • Weström B, Arévalo Sureda E, Pierzynowska K, Pierzynowski SG, Pérez-Cano F-J. 2020. The immature gut barrier and its importance in establishing immunity in newborn mammals. Front Immunol. 11:1153. doi:10.3389/fimmu.2020.01153.
  • Wall R, Fitzgerald G, Hussey S, Ryan T, Murphy B, Ross P, Stanton C. 2007. Genomic diversity of cultivable Lactobacillus populations residing in the neonatal and adult gastrointestinal tract: cultivable lactobacillus populations in the GI tract. FEMS Microbiol Ecol. 59(1):127–137. doi:10.1111/j.1574-6941.2006.00202.x.
  • Radjabzadeh D, Boer CG, Beth SA, van der Wal P, Kiefte-De Jong JC, Jansen MAE, Konstantinov SR, Peppelenbosch MP, Hays JP, Jaddoe VWV, et al. 2020. Diversity, compositional and functional differences between gut microbiota of children and adults. Sci Rep. 10(1):1040. doi:10.1038/s41598-020-57734-z.
  • Pachenari A, Suganthy M, Burczynska B, Dang V, Choudhury M, Pachenari A. 2016. A comparative study of bifidobacteria in human babies and adults. Biosci Microbiota Food Health. 35(2):97–103. doi:10.12938/bmfh.2015-006.
  • Horne RG, Freedman SB, Johnson-Henry KC, Pang X-L, Lee BE, Farion KJ, Gouin S, Schuh S, Poonai N, Hurley KF, et al. 2022. Intestinal microbial composition of children in a randomized controlled trial of probiotics to treat acute gastroenteritis. Front Cell Infect Microbiol. 12:883163. doi:10.3389/fcimb.2022.883163.
  • Öhman L, Lasson A, Strömbeck A, Isaksson S, Hesselmar M, Simrén M, Strid H, Magnusson MK. 2021. Fecal microbiota dynamics during disease activity and remission in newly diagnosed and established ulcerative colitis. Sci Rep. 11(1):8641. doi:10.1038/s41598-021-87973-7.
  • Samara J, Moossavi S, Alshaikh B, Ortega VA, Pettersen VK, Ferdous T, Hoops SL, Soraisham A, Vayalumkal J, Dersch-Mills D, et al. 2022. Supplementation with a probiotic mixture accelerates gut microbiome maturation and reduces intestinal inflammation in extremely preterm infants. Cell Host Microbe. 30(5):696–711.e5. doi:10.1016/j.chom.2022.04.005.
  • Wall R, Ross RP, Ryan CA, Hussey S, Murphy B, Fitzgerald GF, Stanton C. 2009. Role of gut microbiota in early infant development. Clinical Medicine. Pediatrics. 3:2008. doi:10.4137/CMPed.S2008.
  • Szajewska H, Kołodziej M. 2015. Systematic review with meta-analysis: lactobacillus rhamnosus GG in the prevention of antibiotic-associated diarrhoea in children and adults. Aliment Pharmacol Ther. 42(10):1149–1157. doi:10.1111/apt.13404.
  • Simrén M, Öhman L, Olsson J, Svensson U, Ohlson K, Posserud I, Strid H. 2009. Clinical trial: the effect of a fermented milk containing three probiotic bacteria in patients with irritable bowel syndrome (IBS) - a randomized, double-blind, controlled study. Aliment Pharmacol Ther. 31:2–218–227.
  • Francavilla R, Miniello V, Magista AM, De Canio A, Bucci N, Gagliardi F, Lionetti E, Castellaneta S, Polimeno L, Peccarisi L, et al. 2010. A randomized controlled trial of lactobacillus gg in children with functional abdominal pain. PEDIATRICS. 126(6):e1445–52. doi:10.1542/peds.2010-0467.
  • Liu Z, Qin H, Yang Z, Xia Y, Liu W, Yang J, Jiang Y, Zhang H, Yang Z, Wang Y, et al. 2011. Randomised clinical trial: the effects of perioperative probiotic treatment on barrier function and post-operative infectious complications in colorectal cancer surgery - a double-blind study: randomised clinical trial: perioperative probiotics on colon cancer. Aliment Pharmacol Ther. 33:50–63.
  • Man AL, Bertelli E, Rentini S, Regoli M, Briars G, Marini M, Watson AJM, Nicoletti C. 2015. Age-associated modifications of intestinal permeability and innate immunity in human small intestine. Clin Sci. 129(7):515–527. doi:10.1042/CS20150046.
  • Harata G, Yoda K, Wang R, Miyazawa K, Sato M, He F, Endo A. 2021. Species- and Age/Generation-Dependent Adherence of Bifidobacterium bifidum to Human Intestinal Mucus In Vitro. Microorganisms. 9(3):542. doi:10.3390/microorganisms9030542.
  • Zhang L, Zeng X, Guo D, Zou Y, Gan H, Huang X. 2022. Early use of probiotics might prevent antibiotic-associated diarrhea in elderly (>65 years): a systematic review and meta-analysis. BMC Geriatr. 22(1):562. doi:10.1186/s12877-022-03257-3.
  • Korpela K, Salonen A, Virta LJ, Kumpu M, Kekkonen RA, de Vos WM, Mistry N. 2016. Lactobacillus rhamnosus GG intake modifies preschool children’s intestinal microbiota, alleviates penicillin-associated changes, and reduces antibiotic use. PLoS ONE. 11(4):e0154012. doi:10.1371/journal.pone.0154012.
  • Jeong -J-J, Woo J-Y, Ahn Y-T, Shim J-H, Huh C-S, S-H I, Han MJ, Kim D-H. 2015. The probiotic mixture IRT5 ameliorates age-dependent colitis in rats. Int Immunopharmacol. 26(2):416–422. doi:10.1016/j.intimp.2015.04.021.
  • Kaushal D, Kansal VK. 2011. Age-related decline in macrophage and lymphocyte functions in mice and its alleviation by treatment with probiotic Dahi containing Lactobacillus acidophilus and Bifidobacterium bifidum. J Dairy Res. 78(4):404–411. doi:10.1017/S0022029911000537.
  • Neurath MF. 2017. Current and emerging therapeutic targets for IBD. Nat Rev Gastroenterol Hepatol. 14(5):269–278. doi:10.1038/nrgastro.2016.208.
  • Michaud M, Balardy L, Moulis G, Gaudin C, Peyrot C, Vellas B, Cesari M, Nourhashemi F. 2013. Proinflammatory cytokines, aging, and age-related diseases. J Am Med Dir Assoc. 14:877–882.
  • Langerholc T, Maragkoudakis PA, Wollgast J, Gradisnik L, Cencic A. 2011. Novel and established intestinal cell line models – an indispensable tool in food science and nutrition. Trends Food Sci Technol. 22:S11–20. doi:10.1016/j.tifs.2011.03.010.
  • Stuivenberg GA, Burton JP, Bron PA, Reid G. 2022. Why are bifidobacteria important for infants? Microorganisms. 10(2):278. doi:10.3390/microorganisms10020278.