3,336
Views
7
CrossRef citations to date
0
Altmetric
Review

From intestinal colonization to systemic infections: Candida albicans translocation and dissemination

ORCID Icon, ORCID Icon & ORCID Icon
Article: 2154548 | Received 15 Sep 2022, Accepted 29 Nov 2022, Published online: 11 Dec 2022

References

  • Kullberg BJ, Arendrup MC, Campion EW. Invasive Candidiasis. N Engl J Med. Oct 8 2015;373(15):1445–14. doi:10.1056/NEJMra1315399
  • Pappas PG, Lionakis MS, Arendrup MC, Ostrosky-Zeichner L, Kullberg BJ. Invasive candidiasis. Nat Rev Dis Primers May. 2018;11(4):18026. doi:10.1038/nrdp.2018.26.
  • Ruhnke M, Groll AH, Mayser P, Ullmann AJ, Mendling W, Hof H, Denning DW. 2015. Denning DW estimated burden of fungal infections in Germany. Mycoses. Oct;58(Suppl 5):22–28. doi:10.1111/myc.12392.
  • Nash AK, Auchtung TA, Wong MC, Smith DP, Gesell JR, Ross MC, Stewart CJ, Metcalf GA, Muzny DM, Gibbs RA, et al. The gut mycobiome of the Human Microbiome Project healthy cohort. Microbiome. Nov 25 2017;5(1):153. 10.1186/s40168-017-0373-4. PMC5702186.
  • Reagan DR, Pfaller MA, Hollis RJ, Wenzel RP. Wenzel RP Characterization of the sequence of colonization and nosocomial candidemia using DNA fingerprinting and a DNA probe. J Clin Microbiol Dec. 1990;28(12):2733–2738. doi:10.1128/jcm.28.12.2733-2738.1990. PMC268264
  • Miranda LN, van der Heijden IM, Costa SF, Sousa AP, Sienra RA, Gobara S, Santos CR, Lobo RD, Pessoa VP Jr. Levin AS Candida colonisation as a source for candidaemia. J Hosp Infect May. 2009;72(1):9–16. doi:10.1016/j.jhin.2009.02.009.
  • Nucci M. Anaissie E Revisiting the source of candidemia: skin or gut? Clin Infect Dis. Dec 15 2001;33(12):1959–1967. doi:10.1086/323759
  • Zhai B, Ola M, Rolling T, Tosini NL, Joshowitz S, Littmann ER, Amoretti LA, Fontana E, Wright RJ, Miranda E, et al. 2020. High-resolution mycobiota analysis reveals dynamic intestinal translocation preceding invasive candidiasis. Nat Med. Jan;26(1):59–64. 10.1038/s41591-019-0709-7: PMC7005909
  • Rolling T, Zhai B, Gjonbalaj M, Tosini N, Yasuma-Mitobe K, Fontana E, Amoretti LA, Wright RJ, Ponce DM, Perales MA, et al. 2021. Haematopoietic cell transplantation outcomes are linked to intestinal mycobiota dynamics and an expansion of Candida parapsilosis complex species. Nat Microbiol.Nov11;6(12):1505–1515. doi:10.1038/s41564-021-00989-7.
  • Kim AS, Garni RM, Henry-Stanley MJ, Bendel CM, Erlandsen SL, Wells CL. 2003. Wells CL Hypoxia and extraintestinal dissemination of Candida albicans yeast forms. Shock. Mar;19(3):257–262. doi:10.1097/00024382-200303000-00010.
  • Takahashi K, Kita E, Konishi M, Yoshimoto E, Mikasa K, Narita N, Kimura H. 2003. Translocation model of Candida albicans in DBA-2/J mice with protein calorie malnutrition mimics hematogenous candidiasis in humans. Microb Pathog. Nov;35(5):179–187. doi:10.1016/j.micpath.2003.06.001.
  • Kadosh D, Najvar LK, Bocanegra R, Olivo M, Kirkpatrick WR, Wiederhold NP, Patterson TF. 2016. Patterson TF effect of antifungal treatment in a diet-based murine model of disseminated candidiasis acquired via the gastrointestinal tract. Antimicrob Agents Chemother. Nov;60(11):6703–6708. PMC5075076. doi:10.1128/aac.01144-16.
  • Hirayama T, Miyazaki T, Ito Y, Wakayama M, Shibuya K, Yamashita K, Takazono T, Saijo T, Shimamura S, Yamamoto K, et al. Virulence assessment of six major pathogenic Candida species in the mouse model of invasive candidiasis caused by fungal translocation. Sci Rep. Mar 2 2020;10(1):3814. 10.1038/s41598-020-60792-y. PMC7052222.
  • Pan CH, Lo HJ, Yan JY, Hsiao YJ, Hsueh JW, Lin DW, Lin TH, Wu SH, Chen Y-C. Chen YC Candida albicans colonizes and disseminates to the gastrointestinal tract in the presence of the microbiota in a severe combined immunodeficient mouse model. Front Microbiol. 2020;11:619878. PMC7819875. doi:10.3389/fmicb.2020.619878.
  • Koh AY, Köhler JR, Coggshall KT, Van Rooijen N, Pier GB. Mucosal damage and neutropenia are required for Candida albicans dissemination. PLoS Pathog Feb 8. 2008;4(2):e35. doi:10.1371/journal.ppat.0040035. PMC2242836
  • Kumamoto CA, Gresnigt MS, Hube B. Hube B The gut, the bad and the harmless: candida albicans as a commensal and opportunistic pathogen in the intestine. Curr Opin Microbiol Aug. 2020;56:7–15. PMC7744392. doi:10.1016/j.mib.2020.5.006.
  • Naglik JR, Gaffen SL, Hube B. Hube B Candidalysin: discovery and function in Candida albicans infections. Curr Opin Microbiol. 2019 Dec;52:100–109 . PMC6687503. doi:10.1016/j.mib.2019.06.002.
  • Alonso-Monge R, Gresnigt MS, Román E, Hube B, Pla J, Jarosz D. 2021. Candida albicans colonization of the gastrointestinal tract: a double-edged sword. PLoS Pathog. Jul;17(7):e1009710. PMC8297749. doi:10.1371/journal.ppat.1009710.
  • Basmaciyan L, Bon F, Paradis T, Lapaquette P, Dalle F. Candida Albicans Interactions With The Host: crossing The Intestinal Epithelial Barrier. Tissue Barriers. 2019;7(2):1612661. doi:10.1080/21688370.2019.1612661. PMC6619947
  • Sudbery PE. Growth of Candida albicans hyphae. Nat Rev Microbiol Aug. 2011;9(10):737–748. doi:10.1038/nrmicro2636.
  • Jacobsen ID, Wilson D, Wächtler B, Brunke S, Naglik JR, Hube B. 2012. Candida albicans dimorphism as a therapeutic target Expert. Rev Anti Infect Ther. Jan;10(1):85–93. doi:10.1586/eri.11.152.
  • Jacobsen ID, Hube B. Candida albicans morphology: still in focus Expert. Rev Anti Infect Ther Apr. 2017;15(4):327–330. doi:10.1080/14787210.2017.1290524.
  • Vautier S, Drummond RA, Chen K, Murray GI, Kadosh D, Brown AJ, Gow NA, MacCallum DM, Kolls JK, Brown GD. C andida albicans colonization and dissemination from the murine gastrointestinal tract: the influence of morphology and Th17 immunity. Cell Microbiol Apr. 2015;17(4):445–450. doi:10.1111/cmi.12388. PMC4409086
  • Witchley JN, Penumetcha P, Abon NV, Woolford CA, Mitchell AP, Noble SM. Candida albicans morphogenesis programs control the balance between gut commensalism and invasive infection. Cell Host Microbe. 2019 Mar;25(3):432–443 e6. PMC6581065. doi:10.1016/j.chom.2019.02.008.
  • Böhm L, Torsin S, Tint SH, Eckstein MT, Ludwig T, Pérez JC. 2017. The yeast form of the fungus Candida albicans promotes persistence in the gut of gnotobiotic mice. PLoS Pathog. Oct;13(10):e1006699. PMC5673237. doi:10.1371/journal.ppat.1006699.
  • McDonough LD, Mishra AA, Tosini N, Kakade P, Penumutchu S, Liang SH, Maufrais C, Zhai B, Taur Y, Belenky P, et al. 2021. Candida albicans Isolates 529L and CHN1 exhibit stable colonization of the murine gastrointestinal. Tract mBio Nov.2;12(6):e0287821. doi:10.1128/mBio.02878-21.
  • Tso GHW, Reales-Calderon JA, Tan ASM, Sem X, Gtt L, Tan TG, Lai GC, Srinivasan KG, Yurieva M, Liao W, et al. 2018. Experimental evolution of a fungal pathogen into a gut symbiont. Science.Nov2;362(6414):589–595. doi:10.1126/science.aat0537.
  • Pande K, Chen C, Noble SM. 2013. Passage through the mammalian gut triggers a phenotypic switch that promotes Candida albicans commensalism. Nat Genet. Sep;45(9):1088–1091. PMC3758371. doi:10.1038/ng.2710.
  • Regan H, Scaduto CM, Hirakawa MP, Gunsalus K, Correia-Mesquita TO, Sun Y, Chen Y, Kumamoto CA, Bennett RJ, Whiteway M. 2017. Negative regulation of filamentous growth in Candida albicans by Dig1p. Mol Microbiol. Sep;105(5):810–824. PMC5724037. doi:10.1111/mmi.13738.
  • Banerjee M, Thompson DS, Lazzell A, Carlisle PL, Pierce C, Monteagudo C, López-Ribot JL, Kadosh D. UME6, a novel filament-specific regulator of Candida albicans hyphal extension and virulence. Mol Biol Cell Apr. 2008;19(4):1354–1365. doi:10.1091/mbc.e07-11-1110. PMC2291399
  • Ost KS, O’Meara TR, Stephens WZ, Chiaro T, Zhou H, Penman J, Bell R, Catanzaro JR, Song D, Singh S, et al. 2021. Adaptive immunity induces mutualism between commensal eukaryotes. Nature Aug. 596(7870):114–118. doi:10.1038/s41586-021-03722-w.
  • Doron I, Mesko M, Li XV, Kusakabe T, Leonardi I, Shaw DG, Fiers WD, Lin WY, Bialt-DeCelie M, Román E, et al. 2021. Mycobiota-induced IgA antibodies regulate fungal commensalism in the gut and are dysregulated in Crohn’s disease. Nat Microbiol. Dec;6(12):1493–1504. 10.1038/s41564-021-00983-z: PMC8622360
  • Doron I, Leonardi I, Li XV, Fiers WD, Semon A, Bialt-DeCelie M, Migaud M, Gao IH, Lin WY, Kusakabe T, et al. Human gut mycobiota tune immunity via CARD9-dependent induction of anti-fungal IgG antibodies. Cell. Feb 18 2021;184(4):1017–1031.e14. 10.1016/j.cell.2021.01.016. PMC7936855.
  • Bacher P, Hohnstein T, Beerbaum E, Röcker M, Blango MG, Kaufmann S, Röhmel J, Eschenhagen P, Grehn C, Seidel K, et al. Human Anti-fungal Th17 immunity and pathology rely on cross-reactivity against Candida albicans. Cell. Mar 7 2019;1766:1340–1355 e15. 10.1016/j.cell.2019.01.041
  • Shao TY, Ang WXG, Jiang TT, Huang FS, Andersen H, Kinder JM, Pham G, Burg AR, Ruff B, Gonzalez T, et al. Commensal Candida albicans positively calibrates systemic Th17 immunological responses. Cell Host Microbe. 2019 Mar 13;25(3):404–417 e6. PMC6419754. doi:10.1016/j.chom.2019.02.004
  • Swidergall M, LeibundGut-Landmann S. 2022. Immunosurveillance of Candida albicans commensalism by the adaptive immune system. Mucosal Immunol. May;15(5):829–836. PMC9385492. doi:10.1038/s41385-022-00536-5.
  • Shao TY, Haslam DB, Bennett RJ, Way SS. 2022. Friendly fungi: symbiosis with commensal Candida albicans Trends. Immunol. Sep;43(9):706–717. doi:10.1016/j.it.2022.07.003.
  • Yeung F, Chen YH, Lin JD, Leung JM, McCauley C, Devlin JC, Hansen C, Cronkite A, Stephens Z, Drake-Dunn C, et al. Altered immunity of laboratory mice in the natural environment is associated with fungal colonization. Cell Host Microbe. 2020 May 13;27(5):809–822 e6. PMC7276265. doi:10.1016/j.chom.2020.02.015
  • White SJ, Rosenbach A, Lephart P, Nguyen D, Benjamin A, Tzipori S, Whiteway M, Mecsas J, Kumamoto CA. 2007. Self-regulation of Candida albicans population size during GI colonization. PLoS Pathog. Dec;3(12):e184. PMC2134954. doi:10.1371/journal.ppat.0030184.
  • Wiesner SM, Jechorek RP, Garni RM, Bendel CM, Wells CL. 2001. Gastrointestinal colonization by Candida albicans mutant strains in antibiotic-treated mice. Clin Diagn Lab Immunol. Jan;8(1):192–195. PMC96034. doi:10.1128/cdli.8.1.192-195.2001.
  • Graf K, Last A, Gratz R, Allert S, Linde S, Westermann M, Gröger M, Mosig AS, Gresnigt MS, Hube B. Keeping Candida commensal: how lactobacilli antagonize pathogenicity of Candida albicans in an in vitro gut model. Dis Model Mech. Sep 12 2019; 12(9): 10.1242/dmm.039719. PMC6765188.
  • Alonso-Roman R, Last A, Mirhakkak MH, Sprague JL, Möller L, Großmann P, Graf K, Gratz R, Mogavero S, Vylkova S, et al. Lactobacillus rhamnosus colonisation antagonizes Candida albicans by forcing metabolic adaptations that compromise pathogenicity. Nat Commun. Jun 9 2022;13(1):3192. 10.1038/s41467-022-30661-5. PMC9184479.
  • Zeise KD, Woods RJ, Huffnagle GB. Interplay between Candida albicans and Lactic Acid Bacteria in the Gastrointestinal Tract: impact on Colonization Resistance, Microbial Carriage, Opportunistic Infection, and Host Immunity . Clin Microbiol Rev. Dec 15 2021;34(4):e0032320. doi:10.1128/cmr.00323-20. PMC8404691.
  • Förster TM, Mogavero S, Dräger A, Graf K, Polke M, Jacobsen ID, Hube B. 2016. Enemies and brothers in arms: candida albicans and gram-positive bacteria. Cell Microbiol. Dec;18(12):1709–1715. doi:10.1111/cmi.12657.
  • Mishra AA, Koh AY. 2018. Adaptation of Candida albicans during gastrointestinal tract colonization. Curr Clin Microbiol Rep. Sep;5(3):165–172. PMC6294318. doi:10.1007/s40588-018-0096-8.
  • Leonardi I, Gao IH, Lin WY, Allen M, Li XV, Fiers WD, De Celie MB, Putzel GG, Yantiss RK, Johncilla M, et al. Mucosal fungi promote gut barrier function and social behavior via Type 17 immunity. Cell Mar. 2022;185(5):831–846 e14. PMC8897247. doi:10.1016/j.cell.2022.01.017.
  • Matsuo K, Haku A, Bi B, Takahashi H, Kamada N, Yaguchi T, Saijo S, Yoneyama M, Goto Y. 2019. Fecal microbiota transplantation prevents Candida albicans from colonizing the gastrointestinal tract. Microbiol Immunol. May;63(5):155–163. doi:10.1111/1348-0421.12680.
  • Yamaguchi N, Sonoyama K, Kikuchi H, Nagura T, Aritsuka T, Kawabata J. 2005. Gastric colonization of Candida albicans differs in mice fed commercial and purified diets. J Nutr. Jan;135(1):109–115. doi:10.1093/jn/135.1.109.
  • Rosenbach A, Dignard D, Pierce JV, Whiteway M, Kumamoto CA. 2010. Adaptations of Candida albicans for growth in the mammalian intestinal tract Eukaryot. Cell. Jul;9(7):1075–1086. PMC2901676. doi:10.1128/ec.00034-10.
  • Martin R, Albrecht-Eckardt D, Brunke S, Hube B, Hünniger K, Kurzai OA, Chauhan N. core filamentation response network in Candida albicans is restricted to eight genes. PLoS One. 2013;8(3):e58613. PMC3597736 in biomathematical services, which has been commissioned for routine analyses of transcriptome data by the Septomics Research Center This does not alter the authors’ adherence to all the PLOS ONE policies on sharing data and materials. doi:10.1371/journal.pone.0058613
  • Garbe E, Gerwien F, Driesch D, Müller T, Böttcher B, Gräler M, Vylkova S, Liebeke M. Systematic metabolic profiling identifies de novo sphingolipid synthesis as hypha associated and essential for Candida albicans filamentation. mSystems. 2022 Oct 20;e0053922. doi:10.1128/msystems.00539-22.
  • Ribet D, Cossart P. 2015. Cossart P how bacterial pathogens colonize their hosts and invade deeper tissuest. Microbes Infec. Mar;17(3):173–183. doi:10.1016/j.micinf.2015.01.004.
  • Zhou D, Chen LM, Hernandez L, Shears SB, Galán JE. 2001. A Salmonella inositol polyphosphatase acts in conjunction with other bacterial effectors to promote host cell actin cytoskeleton rearrangements and bacterial internalization. Mol Microbiol. Jan;39(2):248–259. doi:10.1046/j.1365-2958.2001.02230.x.
  • Nikitas G, Deschamps C, Disson O, Niault T, Cossart P, Lecuit M. Transcytosis of Listeria monocytogenes across the intestinal barrier upon specific targeting of goblet cell accessible E-cadherin. J Exp Med. Oct 24 2011;208(11):2263–2277. doi:10.1084/jem.20110560. PMC3201198.
  • Phan QT, Myers CL, Fu Y, Sheppard DC, Yeaman MR, Welch WH, Ibrahim AS, Edwards JE Jr, Filler SG, Heitman J. Als3 is a Candida albicans invasin that binds to cadherins and induces endocytosis by host cells. PLoS Biol. 2007 Mar;5(3):e64. DOI:10.1371/journal.pbio.0050064. PMC1802757 Therapeutics, Inc
  • Dalle F, Wächtler B, L’Ollivier C, Holland G, Bannert N, Wilson D, Labruère C, Bonnin A, Hube B. Cellular interactions of Candida albicans with human oral epithelial cells and enterocytes. Cell Microbiol Feb. 2010;12(2):248–271. doi:10.1111/j.1462-5822.2009.01394.x.
  • Goyer M, Loiselet A, Bon F, L’Ollivier C, Laue M, Holland G, Bonnin A, Dalle F. Intestinal cell tight junctions limit invasion of Candida albicans through active penetration and endocytosis in the early stages of the interaction of the fungus with the intestinal barrier. PLoS One. 2016;11(3):e0149159. doi:10.1371/journal.pone.0149159. PMC4775037
  • Moyes DL, Wilson D, Richardson JP, Mogavero S, Tang SX, Wernecke J, Höfs S, Gratacap RL, Robbins J, Runglall M, et al. Candidalysin is a fungal peptide toxin critical for mucosal infection. Nature. 2016 Apr 7;532(7597):64–68. PMC4851236. doi:10.1038/nature17625
  • Allert S, Förster TM, Svensson CM, Richardson JP, Pawlik T, Hebecker B, Rudolphi S, Juraschitz M, Schaller M, Blagojevic M, et al. Candida albicans-Induced Epithelial Damage Mediates Translocation through Intestinal Barriers. mBio. Jun 5 2018;9(3): 10.1128/mBio.00915-18. PMC5989070.
  • Lachat J, Pascault A, Thibaut D, Le Borgne R, Verbavatz JM, Weiner A. Trans-cellular tunnels induced by the fungal pathogen Candida albicans facilitate invasion through successive epithelial cells without host damage. Nat Commun. Jun 30 2022;13(1):3781. doi:10.1038/s41467-022-31237-z. PMC9246882.
  • Mabbott NA, Donaldson DS, Ohno H, Williams IR, Mahajan A. 2013. Microfold (M) cells: important immunosurveillance posts in the intestinal epithelium. Mucosal Immunol. Jul;6(4):666–677. PMC3686595. doi:10.1038/mi.2013.30.
  • Perdomo OJ, Cavaillon JM, Huerre M, Ohayon H, Gounon P, Sansonetti PJ. Acute inflammation causes epithelial invasion and mucosal destruction in experimental shigellosis. J Exp Med. 1994 Oct;180(4):1307–1319. PMC2191671. doi:10.1084/jem.180.4.1307.
  • Jones BD, Ghori N, Falkow S. Salmonella typhimurium initiates murine infection by penetrating and destroying the specialized epithelial M cells of the Peyer’s patches. J Exp Med. Jul 1 1994;180(1):15–23. doi:10.1084/jem.180.1.15. PMC2191576.
  • Rescigno M, Urbano M, Valzasina B, Francolini M, Rotta G, Bonasio R, Granucci F, Kraehenbuhl JP, Ricciardi-Castagnoli P. Ricciardi-Castagnoli P Dendritic cells express tight junction proteins and penetrate gut epithelial monolayers to sample bacteria. Nat Immunol Apr. 2001;2(4):361–367. doi:10.1038/86373.
  • De Jesus M, Rodriguez AE, Yagita H, Ostroff GR, Mantis NJ. 2015. Sampling of Candida albicans and Candida tropicalis by Langerin-positive dendritic cells in mouse Peyer’s patches. Immunol Lett. Nov;168(1):64–72. doi:10.1016/j.imlet.2015.09.008.
  • Albac S, Schmitz A, Lopez-Alayon C, d’Enfert C, Sautour M, Ducreux A, Labruère-Chazal C, Laue M, Holland G, Bonnin A, et al. 2016 . Candida albicans is able to use M cells as a portal of entry across the intestinal barrier in vitro. Cell Microbiol. Feb;18(2):195–210. doi:10.1111/cmi.12495.
  • Leonardi I, Li X, Semon A, Li D, Doron I, Putzel G, Bar A, Prieto D, Rescigno M, McGovern DPB, et al. CX3CR1(+) mononuclear phagocytes control immunity to intestinal fungi. Science. Jan 12 2018;359(6372):232–236. 10.1126/science.aao1503. PMC5805464.
  • Austermeier S, Kasper L, Westman J, Gresnigt MS. Gresnigt MS I want to break free - macrophage strategies to recognize and kill Candida albicans, and fungal counter-strategies to escape. Curr Opin Microbiol. 2020 Dec;58:15–23. doi:10.1016/j.mib.2020.05.007.
  • Scherer AK, Blair BA, Park J, Seman BG, Kelley JB, Wheeler RT, May RC. 2020. Redundant Trojan horse and endothelial-circulatory mechanisms for host-mediated spread of Candida albicans yeast. PLoS Pathog. Aug;16(8):e1008414. PMC7447064. doi:10.1371/journal.ppat.1008414.
  • Fusco A, Savio V, Donniacuo M, Perfetto B, Donnarumma G. Antimicrobial peptides human beta-defensin-2 and −3 protect the gut during Candida albicans infections enhancing the intestinal barrier integrity: in vitro study front. Cell Infect Microbiol. 2021;11:666900. PMC8223513. doi:10.3389/fcimb.2021.666900.
  • Fang Y, Wu C, Wang Q, Tang J. 2019. Farnesol contributes to intestinal epithelial barrier function by enhancing tight junctions via the JAK/STAT3 signaling pathway in differentiated Caco-2 cells. J Bioenerg Biomembr. Dec;51(6):403–412. doi:10.1007/s10863-019-09817-4.
  • Böhringer M, Pohlers S, Schulze S, Albrecht-Eckardt D, Piegsa J, Weber M, Martin R, Hünniger K, Linde J, Guthke R, et al. 2016. Candida albicans infection leads to barrier breakdown and a MAPK/NF-κB mediated stress response in the intestinal epithelial cell line C2BBe1. Cell Microbiol. Jul;18(7):889–904. doi:10.1111/cmi.12566.
  • Frank CF, Hostetter MK. Cleavage of E-cadherin: a mechanism for disruption of the intestinal epithelial barrier by Candida albicans. Transl Res Apr. 2007;149(4):211–222. doi:10.1016/j.trsl.2006.11.006.
  • Eichner M, Protze J, Piontek A, Krause G, Piontek J. 2017. Targeting and alteration of tight junctions by bacteria and their virulence factors such as Clostridium perfringens enterotoxin. Pflugers Arch. Jan;469(1):77–90. doi:10.1007/s00424-016-1902-x.
  • Wu Z, Nybom P, Magnusson KE. Distinct effects of Vibrio cholerae haemagglutinin/protease on the structure and localization of the tight junction-associated proteins occludin and ZO-1. Cell Microbiol Feb. 2000;2(1):11–17. doi:10.1046/j.1462-5822.2000.00025.x.
  • Schmidt E, Kelly SM. van der Walle CF Tight junction modulation and biochemical characterisation of the zonula occludens toxin C-and N-termini. FEBS Lett. Jun 26 2007;581(16):2974–2980. doi:10.1016/j.febslet.2007.05.051
  • Fasano A, Uzzau S, Fiore C, Margaretten K. 1997. The enterotoxic effect of zonula occludens toxin on rabbit small intestine involves the paracellular pathway. Gastroenterology. Mar;112(3):839–846. pm9041245. doi:10.1053/gast.1997.v112.
  • Villar CC, Kashleva H, Nobile CJ, Mitchell AP, Dongari-Bagtzoglou A. 2007. Mucosal tissue invasion by Candida albicans is associated with E-cadherin degradation mediated by transcription factor Rim101p and protease Sap5p Infect. Immun. May;75(5):2126–2135. PMC1865768. doi:10.1128/iai.00054-07.
  • Grubb SE, Murdoch C, Sudbery PE, Saville SP, Lopez-Ribot JL, Thornhill MH. 2009. Adhesion of Candida albicans to endothelial cells under physiological conditions of flow Infect. Immun. Sep;77(9):3872–3878. PMC2738003. doi:10.1128/iai.00518-09.
  • Wilson D, Hube B. Hgc1 mediates dynamic Candida albicans-endothelium adhesion events during circulation Eukaryot. Cell Feb. 2010;9(2):278–287. doi:10.1128/ec.00307-09. PMC2823009
  • Seman BG, Moore JL, Scherer AK, Blair BA, Manandhar S, Jones JM. 2018. Yeast and filaments have specialized, independent activities in a zebrafish model of Candida albicans infection infect. Immun. Oct;86:10. 10.1128/iai.00415-18. PMC6204735.
  • Saville SP, Lazzell AL, Monteagudo C, Lopez-Ribot JL. 2003. Engineered control of cell morphology in vivo reveals distinct roles for yeast and filamentous forms of Candida albicans during infection Eukaryot. Cell. Oct;2(5):1053–1060. PMC219382. doi:10.1128/ec.2.5.1053-1060.2003.
  • Dunker C, Polke M, Schulze-Richter B, Schubert K, Rudolphi S, Gressler AE, Pawlik T, Prada Salcedo JP, Niemiec MJ, Slesiona-Künzel S, et al. Rapid proliferation due to better metabolic adaptation results in full virulence of a filament-deficient Candida albicans strain. Nat Commun. Jun 23 2021;12(1):3899. 10.1038/s41467-021-24095-8. PMC8222383.
  • Eggimann P, Que YA, Revelly JP, Pagani J-L. Pagani JL Preventing invasive candida infections where could we do better? J Hosp Infect Apr. 2015;89(4):302–308. doi:10.1016/j.jhin.2014.11.006.
  • Davidson L, Netea MG, Kullberg BJ. Patient susceptibility to candidiasis-a potential for adjunctive immunotherapy. J Fungi (Basel). Jan 9 2018; 4(1): 10.3390/jof4010009. PMC5872312.
  • Eggimann P, Pittet D. 2014. Candida colonization index and subsequent infection in critically ill surgical patients: 20 years later Intensive. Care Med. Oct;40(10):1429–1448. PMC4176828. doi:10.1007/s00134-014-3355-z.
  • Fox EP, Bui CK, Nett JE, Hartooni N, Mui MC, Andes DR, Nobile CJ, Johnson AD. An expanded regulatory network temporally controls Candida albicans biofilm formation. Mol Microbiol Jun. 2015;96(6):1226–1239. doi:10.1111/mmi.13002. PMC4464956
  • Heilmann CJ, Sorgo AG, Siliakus AR, Dekker HL, Brul S, de Koster CG, de Koning LJ, Klis FM. 2011. Hyphal induction in the human fungal pathogen Candida albicans reveals a characteristic wall protein profile. Microbiology. Aug;157(Pt 8):2297–2307. doi:10.1099/mic.0.049395-0.
  • McCall AD, Pathirana RU, Prabhakar A, Cullen PJ, Edgerton M. Candida albicans biofilm development is governed by cooperative attachment and adhesion maintenance proteins. NPJ Biofilms Microbiomes. 2019;5(1):21. doi:10.1038/s41522-019-0094-5. PMC6707306
  • Nobile CJ, Schneider HA, Nett JE, Sheppard DC, Filler SG, Andes DR, Mitchell AP. Complementary adhesin function in C albicans biofilm formation. Curr Biol. Jul 22 2008;18(14):1017–1024. doi:10.1016/j.cub.2008.06.034. PMC2504253.
  • Tati S, Davidow P, McCall A, Hwang-Wong E, Rojas IG, Cormack B, Edgerton M, Noverr MC. 2016. Candida glabrata binding to Candida albicans hyphae enables its development in oropharyngeal candidiasis. PLoS Pathog. Mar;12(3):e1005522. PMC4814137. doi:10.1371/journal.ppat.1005522.
  • Andrutis KA, Riggle PJ, Kumamoto CA. Tzipori S Intestinal lesions associated with disseminated candidiasis in an experimental animal model. J Clin Microbiol Jun. 2000;38(6):2317–2323. doi:10.1128/jcm.38.6.2317-2323.2000. PMC86791
  • Fradin C, De Groot P, MacCallum D, Schaller M, Klis F, Odds FC, Hube B. Granulocytes govern the transcriptional response, morphology and proliferation of Candida albicans in human blood. Mol Microbiol Apr. 2005;56(2):397–415. doi:10.1111/j.1365-2958.2005.04557.x.
  • Fradin C, Kretschmar M, Nichterlein T, Gaillardin C, d’Enfert C, Hube B. Stage-specific gene expression of Candida albicans in human blood. Mol Microbiol Mar. 2003;47(6):1523–1543. doi:10.1046/j.1365-2958.2003.03396.x.
  • Hünniger K, Lehnert T, Bieber K, Martin R, Figge MT. Kurzai O A virtual infection model quantifies innate effector mechanisms and Candida albicans immune escape in human blood. PLoS Comput Biol Feb. 2014;10(2):e1003479. doi:10.1371/journal.pcbi.1003479. PMC3930496
  • Machata S, Sreekantapuram S, Hünniger K, Kurzai O, Dunker C, Schubert K, Krüger W, Schulze-Richter B, Speth C, Rambach G, et al. Significant differences in host-pathogen interactions between murine and human whole blood. Front Immunol. 2020;11:565869. PMC7843371. doi:10.3389/fimmu.2020.565869.
  • Shen J, Cowen LE, Griffin AM, Chan L, Köhler JR. The Candida albicans pescadillo homolog is required for normal hypha-to-yeast morphogenesis and yeast proliferation. Proc Natl Acad Sci U S A. Dec 30 2008;105(52):20918–20923. doi:10.1073/pnas.0809147105. PMC2634893.
  • Uppuluri P, Acosta Zaldívar M, Anderson MZ, Dunn MJ, Berman J, Lopez Ribot JL, Köhler JR. Candida albicans dispersed cells are developmentally distinct from biofilm and planktonic. Cells mBio. Aug 21 2018; 9(4): 10.1128/mBio.01338-18. PMC6106089.
  • Uppuluri P, Chaturvedi AK, Jani N, Pukkila-Worley R, Monteagudo C, Mylonakis E, Köhler JR, Lopez Ribot JL. 2012. Physiologic expression of the Candida albicans pescadillo homolog is required for virulence in a murine model of hematogenously disseminated candidiasis Eukaryot. Cell. Dec;11(12):1552–1556. PMC3536276. doi:10.1128/ec.00171-12.