3,526
Views
4
CrossRef citations to date
0
Altmetric
Research Paper

Effect of food additives on key bacterial taxa and the mucosa-associated microbiota in Crohn’s disease. The ENIGMA study

, , , , , , , , , , , , , , , , , & ORCID Icon show all
Article: 2172670 | Received 21 Sep 2022, Accepted 18 Jan 2023, Published online: 27 Feb 2023

References

  • Ananthakrishnan AN. Epidemiology and risk factors for IBD. Nat Rev Gastroenterol Hepatol. 2015;12(4):205–18. doi:10.1038/nrgastro.2015.34.
  • Sartor RB. Therapeutic manipulation of the enteric microflora in inflammatory bowel diseases: antibiotics, probiotics, and prebiotics. Gastroenterology. 2004;126(6):1620–1633. doi:10.1053/j.gastro.2004.03.024.
  • Sartor RB, Wu GD. Roles for intestinal bacteria, viruses, and fungi in pathogenesis of inflammatory bowel diseases and therapeutic approaches. Gastroenterology. 2017;152(2):327–39 e4. doi:10.1053/j.gastro.2016.10.012.
  • Leeming ER, Johnson AJ, Spector TD, Le Roy CI, Vannozzi O, Di Ciolo L, Lillo F, Giusti M. Effect of diet on the gut microbiota: rethinking intervention duration. Nutrients. 2019;12(1):11. doi:10.3390/nu12010011.
  • Kaplan GG, Ng SC. Globalisation of inflammatory bowel disease: perspectives from the evolution of inflammatory bowel disease in the UK and China. Lancet Gastroenterol Hepatol. 2016;1(4):307–316. doi:10.1016/S2468-1253(16)30077-2.
  • Ng SC, Shi HY, Hamidi N, Underwood FE, Tang W, Benchimol EI, Panaccione R, Ghosh S, Wu JCY, Chan FKL, et al. Worldwide incidence and prevalence of inflammatory bowel disease in the 21st century: a systematic review of population-based studies. Lancet. 2018;390(10114):2769–2778. doi:10.1016/S0140-6736(17)32448-0.
  • Seksik P, Sokol H, Lepage P, Vasquez N, Manichanh C, Mangin I, POCHART P, Dore J, Marteau P. Review article: the role of bacteria in onset and perpetuation of inflammatory bowel disease. Aliment Pharmacol Ther. 2006;24(Suppl 3):11–18. doi:10.1111/j.1365-2036.2006.03053.x.
  • Manichanh C, Borruel N, Casellas F, Guarner F. The gut microbiota in IBD. Nat Rev Gastroenterol Hepatol. 2012;9(10):599–608. doi:10.1038/nrgastro.2012.152.
  • Zhao H, Xu H, Chen S, He J, Zhou Y, Nie Y. Systematic review and meta-analysis of the role of Faecalibacterium prausnitzii alteration in inflammatory bowel disease. J Gastroenterol Hepatol. 2021;36(2):320–328. doi:10.1111/jgh.15222.
  • Hold GL, Schwiertz A, Aminov RI, Blaut M, Flint HJ. Oligonucleotide probes that detect quantitatively significant groups of butyrate-producing bacteria in human feces. Appl Environ Microbiol. 2003;69(7):4320–4324. doi:10.1128/AEM.69.7.4320-4324.2003.
  • Sokol H, Pigneur B, Watterlot L, Lakhdari O, Bermúdez-Humarán LG, Gratadoux -J-J, Blugeon S, Bridonneau C, Furet J-P, Corthier G, et al. Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proc Natl Acad Sci U S A. 2008;105(43):16731–16736. doi:10.1073/pnas.0804812105.
  • Quevrain E, Maubert MA, Michon C, Chain F, Marquant R, Tailhades J, Miquel S, Carlier L, Bermúdez-Humarán LG, Pigneur B, et al. Identification of an anti-inflammatory protein from Faecalibacterium prausnitzii, a commensal bacterium deficient in Crohn’s disease. Gut. 2016;65(3):415–425. doi:10.1136/gutjnl-2014-307649.
  • Miquel S, Leclerc M, Martin R, Chain F, Lenoir M, Raguideau S, Hudault S, Bridonneau C, Northen T, Bowen B, et al. identification of metabolic signatures linked to anti-inflammatory effects of Faecalibacterium prausnitzii. mBio. 2015;6(2):e00300–15. doi:10.1128/mBio.00300-15.
  • Mukhopadhya I, Hansen R, El-Omar EM, Hold GL. IBD-what role do Proteobacteria play? Nat Rev Gastroenterol Hepatol. 2012;9(4):219–230. doi:10.1038/nrgastro.2012.14.
  • Ni J, Shen TD, Chen EZ, Bittinger K, Bailey A, Roggiani M, Sirota-Madi A, Friedman ES, Chau L, Lin A, Nissim I, Scott J, Lauder A, Hoffmann C, RivasG, Albenberg L, BaldassanoRN, Braun J, XavierRJ, ClishCB, Yudkoff M, et al. A role for bacterial urease in gut dysbiosis and Crohn’s disease. Sci Transl Med 2017;15(9):416. doi:10.1126/scitranslmed.aah6888.
  • Teh JJ, Berendsen EM, Hoedt EC, Kang S, Zhang J, Zhang F, Liu Q, Hamilton AL, Wilson-O’Brien A, Ching J, et al. Novel strain-level resolution of Crohn’s disease mucosa-associated microbiota via an ex vivo combination of microbe culture and metagenomic sequencing. ISME Journal. 2021;15(11):3326–3338. doi:10.1038/s41396-021-00991-1.
  • De Cruz P, Kang S, Wagner J, Buckley M, Sim WH, Prideaux L, Lockett T, McSweeney C, Morrison M, Kirkwood CD, et al. Association between specific mucosa-associated microbiota in Crohn’s disease at the time of resection and subsequent disease recurrence: a pilot study. J Gastroenterol Hepatol. 2015;30(2):268–278. doi:10.1111/jgh.12694.
  • Wright EK, Kamm MA, Wagner J, Teo SM, Cruz P, Hamilton AL, Ritchie KJ, Inouye M, Kirkwood CD. Microbial factors associated with postoperative Crohn’s disease recurrence. J Crohns Colitis. 2017;11(2):191–203. doi:10.1093/ecco-jcc/jjw136.
  • Mondot S, Lepage P, Seksik P, Allez M, Treton X, Bouhnik Y, Colombel JF, Leclerc M, Pochart P, Doré J, et al. Structural robustness of the gut mucosal microbiota is associated with Crohn’s disease remission after surgery. Gut. 2016;65(6):954–962. doi:10.1136/gutjnl-2015-309184.
  • Adeolu M, Alnajar S, Naushad S, Sg R. Genome-based phylogeny and taxonomy of the ‘Enterobacteriales’: proposal for Enterobacterales ord. nov. divided into the families Enterobacteriaceae, Erwiniaceae fam. nov., Pectobacteriaceae fam. nov., Yersiniaceae fam. nov., Hafniaceae fam. nov., Morganellaceae fam. nov., and Budviciaceae fam. nov. Int J Syst Evol Microbiol. 2016;66:5575–5599.
  • Zhang J, Hoedt EC, Liu Q, Berendsen E, Teh JJ, Hamilton A, O’ Brien AW, Ching JYL, Wei H, Yang K, et al. Elucidation of Proteus mirabilis as a key bacterium in crohn’s disease inflammation. Gastroenterology. 2021;160(1):317–30 e11. doi:10.1053/j.gastro.2020.09.036.
  • Berendsen E, Hoedt E, Teh JJ, Zhang J, Zhang F, Liu Q, Hamilton A, Wilson-O‘Brien A, Ching J, Sung JJY, et al. Urease-positive Proteobacteria in crohn’s disease identified by novel ex-vivo mucosal microbe culture combined with metgenomic sequencing (MC-MGS). The ENIGMA study. Gastroenterology. 2019;156:S–1146.
  • Machiels K, Pozuelo Del Rio M, Martinez-De la Torre A, Xie Z, Andreu VP, Sabino J, Santiago A, Campos D, Wolthuis A, D‘Hoore A, et al. Early Postoperative Endoscopic recurrence in Crohn’s disease is characterised by distinct microbiota recolonisation. J Crohns Colitis. 2020;14:1535–1546.
  • Levine A, Sigall Boneh R, Wine E. Evolving role of diet in the pathogenesis and treatment of inflammatory bowel diseases. Gut. 2018;67(9):1726–1738. doi:10.1136/gutjnl-2017-315866.
  • Gultekin F, Oner ME, Savas HB, Dogan B. Food additives and microbiota. North Clin Istanb. 2020;7(2):192–200. doi:10.14744/nci.2019.92499.
  • Martins F, Sentanin MA, De Souza D. Analytical methods in food additives determination: compounds with functional applications. Food Chem. 2019;272:732–750. doi:10.1016/j.foodchem.2018.08.060.
  • Trasande L, Shaffer RM, Sathyanarayana S, Council on Environmental Health. Food additives and child health. Pediatrics. 2018;142(2):e20181410.
  • Ostrowski MP, La Rosa SL, Kunath BJ, Robertson A, Pereira G, Hagen LH, Varghese NJ, Qiu L, Yao T, Flint G, et al. Mechanistic insights into consumption of the food additive xanthan gum by the human gut microbiota. Nat Microbiol. 2022;7(4):556–569. doi:10.1038/s41564-022-01093-0.
  • Chassaing B. [Involvement of food additives in intestinal inflammation and metabolic syndrome in mice]. Med Sci (Paris). 2015;31(6–7):586–588. doi:10.1051/medsci/20153106004.
  • Gerasimidis K, Bryden K, Chen X, Papachristou E, Verney A, Roig M, Hansen R, Nichols B, Papadopoulou R, Parrett A, et al. The impact of food additives, artificial sweeteners and domestic hygiene products on the human gut microbiome and its fibre fermentation capacity. Eur J Nutr. 2020;59(7):3213–3230. doi:10.1007/s00394-019-02161-8.
  • Holder MK, Chassaing B. Impact of food additives on the gut-brain axis. Physiol Behav. 2018;192:173–176. doi:10.1016/j.physbeh.2018.02.025.
  • Mondot S, Kang S, Furet JP, Aguirre de Carcer D, McSweeney C, Morrison M, Marteau P, Dore J, Leclerc M. Highlighting new phylogenetic specificities of Crohn’s disease microbiota. Inflamm Bowel Dis. 2011;17(1):185–192.
  • Lopez-Siles M, Martinez-Medina M, Busquets D, Sabat-Mir M, Duncan SH, Flint HJ, Aldeguer X, Garcia-Gil LJ. Mucosa-associated Faecalibacterium prausnitzii and Escherichia coli co-abundance can distinguish irritable bowel syndrome and inflammatory bowel disease phenotypes. Int J Med Microbiol. 2014;304(3–4):464–475. doi:10.1016/j.ijmm.2014.02.009.
  • Pascal V, Pozuelo M, Borruel N, Casellas F, Campos D, Santiago A, Martinez X, Varela E, Sarrabayrouse G, Machiels K; Pascal V, Pozuelo M, Borruel N, Casellas F, Campos D, Santiago A, et al. A microbial signature for Crohn’s disease. Gut. 2017;66(5):813–822. doi:10.1136/gutjnl-2016-313235.
  • Mi Y, Chin YX, Cao WX, Chang YG, Lim PE, Xue CH, Tang QJ. Native κ-carrageenan induced-colitis is related to host intestinal microecology. Int J Biol Macromol. 2020;147:284–294. doi:10.1016/j.ijbiomac.2020.01.072.
  • Trakman GL, Lin W, Wilson-O’Brien AL, Stanley A, Hamilton AL, Tang W, Verduci E, Gruszfeld D, Xhonneux A, Escribano J, et al. Development and validation of surveys to estimate food additive intake. Nutrients. 2020;(1):12. doi:10.3390/nu13010012.
  • Additives FSANZ. and processing aids food standards Australia and New Zealand, 2019.
  • Irwin SV, Fisher P, Graham E, Malek A, Robidoux A, Lee B-L. Sulfites inhibit the growth of four species of beneficial gut bacteria at concentrations regarded as safe for food. PLoS One. 2017;12(10):e0186629. doi:10.1371/journal.pone.0186629.
  • Hrncirova L, Hudcovic T, Sukova E, Machova V, Trckova E, Krejsek J, Hrncir T. Human gut microbes are susceptible to antimicrobial food additives in vitro. Folia Microbiologica. 2019;64:497–508. doi:10.1007/s12223-018-00674-z.
  • Chassaing B, Compher C, Bonhomme B, Liu Q, Tian Y, Walters W, Nessel L, Delaroque C, Hao F, Gershuni V, et al. Randomized controlled-feeding study of dietary emulsifier carboxymethylcellulose reveals detrimental impacts on the gut microbiota and metabolome. Gastroenterology. 2022;162(3):743–756. doi:10.1053/j.gastro.2021.11.006.
  • Abou-Donia MB, El-Masry EM, Abdel-Rahman AA, McLendon RE, Schiffman SS. Splenda alters gut microflora and increases intestinal p-glycoprotein and cytochrome p-450 in male rats. J Toxicol Environ Health A. 2008;71(21):1415–1429. doi:10.1080/15287390802328630.
  • Labrecque MT, Malone D, Caldwell KE, Allan AM. Impact of ethanol and saccharin on fecal microbiome in pregnant and non-pregnant mice. J Pregnancy Child Health. 2015;2(5):1000193.
  • Lobach AR, Roberts A, Rowland IR. Assessing the in vivo data on low/no-calorie sweeteners and the gut microbiota. Food Chem Toxicol. 2019;124:385–399. doi:10.1016/j.fct.2018.12.005.
  • Chassaing B, Koren O, Goodrich JK, Poole AC, Srinivasan S, Ley RE, Gewirtz AT. Dietary emulsifiers impact the mouse gut microbiota promoting colitis and metabolic syndrome. Nature. 2015;519(7541):92–96. doi:10.1038/nature14232.
  • Singh RK, Wheildon N, Ishikawa S. Food additive P-80 impacts mouse gut microbiota promoting intestinal inflammation, obesity and liver dysfunction. SOJ Microbiol Infect Dis. 2016;4(1):1–18. doi:10.15226/sojmid/4/1/00148.
  • Naimi S, Viennois E, Gewirtz AT, Chassaing B. Direct impact of commonly used dietary emulsifiers on human gut microbiota. Microbiome. 2021;9(1):66. doi:10.1186/s40168-020-00996-6.
  • Gevers D, Kugathasan S, Denson LA, Vázquez-Baeza Y, Van Treuren W, Ren B, Schwager E, Knights D, Song SJ, Yassour M, et al. The treatment-naïve microbiome in new-onset Crohn’s disease. Cell Host Microbe. 2014;15(3):382–392. doi:10.1016/j.chom.2014.02.005.
  • Janssen PH. Growth yield increase and ATP formation linked to succinate decarboxylation in Veillonella parvula. Arch Microbiol. 1992;157(5):442–445. doi:10.1007/BF00249102.
  • Furuhashi H, Higashiyama M, Okada Y, Kurihara C, Wada A, Horiuchi K, Mizoguchi A, Nishii S, Inaba K, Sugihara N, et al. Dietary emulsifier polysorbate-80-induced small-intestinal vulnerability to indomethacin-induced lesions via dysbiosis. J Gastroenterol Hepatol. 2020;35(1):110–117. doi:10.1111/jgh.14808.
  • Gaines S, van Praagh JB, Williamson AJ, Jacobson RA, Hyoju S, Zaborin A, Mao J, Koo HY, Alpert L, Bissonnette M, et al. Western diet promotes intestinal colonization by collagenolytic microbes and promotes tumor formation after colorectal surgery. Gastroenterology. 2020;158(4):958–70 e2. doi:10.1053/j.gastro.2019.10.020.
  • Bancil AS, Sandall AM, Rossi M, Chassaing B, Lindsay JO, Whelan K. Food additive emulsifiers and their impact on gut microbiome, permeability, and inflammation: mechanistic insights in inflammatory bowel disease. Journal of Crohn’s and Colitis. 2020;15(6):1068–1079. doi:10.1093/ecco-jcc/jjaa254.
  • Benevides L, Burman S, Martin R, Robert V, Thomas M, Miquel S, Chain F, Sokol H, Bermudez-Humaran LG, Morrison M, et al. New insights into the diversity of the genus Faecalibacterium. Front Microbiol. 2017;8:1790. doi:10.3389/fmicb.2017.01790.
  • Miyazaki K, Martin JC, Marinsek-Logar R, Flint HJ. Degradation and utilization of xylans by the rumen anaerobe Prevotella bryantii (formerly P. ruminicola subsp. brevis) B14. Anaerobe. 1997;3(6):373–81. doi:10.1006/anae.1997.0125.
  • De Cruz P, Kamm MA, Hamilton AL, Ritchie KJ, Krejany EO, Gorelik A, Liew D, Prideaux L, Lawrance IC, Andrews JM, et al. Crohn’s disease management after intestinal resection: a randomised trial. Lancet. 2015;385(9976):1406–1417. doi:10.1016/S0140-6736(14)61908-5.
  • Kang S, deKlerk a, Noon E, Teh JJ, Zhang J, Zhang F, Liu Q, Hamilton A, Wilson-O’brien A, Trakman G, et al. Food additives enhance pro-inflammatory bacterial growth in Crohn’s disease mucosa-associated microbiota. The ENIGMA study. Gastroenterology. 2021;160(6):S–119.