3,177
Views
3
CrossRef citations to date
0
Altmetric
Research Paper

Multimodal metagenomic analysis reveals microbial single nucleotide variants as superior biomarkers for early detection of colorectal cancer

ORCID Icon, , ORCID Icon, ORCID Icon, , , , ORCID Icon, ORCID Icon & ORCID Icon show all
Article: 2245562 | Received 24 Jul 2023, Accepted 03 Aug 2023, Published online: 27 Aug 2023

References

  • Wong SH, Yu J. 2019. Gut microbiota in colorectal cancer: mechanisms of action and clinical applications. Nat Rev Gastroenterol Hepatol. 16(11):690–22. doi: 10.1038/s41575-019-0209-8.
  • Hyuna Sung JF, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F, Bray F. 2021. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 71(3):209–249. doi: 10.3322/caac.21660.
  • Liang JQ, Li T, Nakatsu G, Chen Y-X, Yau TO, Chu E, Wong S, Szeto CH, Ng SC, Chan FKL, et al. 2020. A novel faecal Lachnoclostridium marker for the non-invasive diagnosis of colorectal adenoma and cancer. Gut. 69(7):1248–1257. doi: 10.1136/gutjnl-2019-318532.
  • Shaukat A, Levin TR. 2022. Current and future colorectal cancer screening strategies. Nat Rev Gastro Hepat. 19(8):521–531. doi: 10.1038/s41575-022-00612-y.
  • Liang L, Liang Y, Li K, Qin P, Lin G, Li Y, Xu H, Wang S, Jing Q, Liang B, et al. 2022. A risk-prediction score for colorectal lesions on 12,628 participants at high risk of colorectal cancer. Gastroenterol Rep (Oxf). 10:goac002. doi: 10.1093/gastro/goac002.
  • Dasari A, Morris VK, Allegra CJ, Atreya C, Benson III AB, Boland P, Chung K, Copur MS, Corcoran RB, Deming DA, Dwyer A. 2020. ctDNA applications and integration in colorectal cancer: an NCI colon and rectal-anal task forces whitepaper. Nat Rev Clin Oncol. 17:757–770. doi: 10.1038/s41571-020-0392-0.
  • Xiao Y, Zhong J, Zhong B, Huang J, Jiang L, Jiang Y, Yuan J, Sun J, Dai L, Yang C, et al. 2020. Exosomes as potential sources of biomarkers in colorectal cancer. Cancer Lett. 476:13–22. doi: 10.1016/j.canlet.2020.01.033.
  • Wang P, Liu P, Glissen Brown JR, Berzin TM, Zhou G, Lei S, Liu X, Li L, Xiao X. 2020. Lower adenoma miss rate of computer-aided detection-assisted colonoscopy vs routine white-light colonoscopy in a prospective tandem study. Gastroenterology. 159:1252–1261.e1255. doi: 10.1053/j.gastro.2020.06.023.
  • Ternes D, Karta J, Tsenkova M, Wilmes P, Haan S, Letellier E. 2020. Microbiome in colorectal cancer: how to get from meta-omics to mechanism? Trends Microbiol. 28:401–423. doi: 10.1016/j.tim.2020.01.001.
  • Thomas AM, Manghi P, Asnicar F, Pasolli E, Armanini F, Zolfo M, Beghini F, Manara S, Karcher N, Pozzi C, et al. 2019. Metagenomic analysis of colorectal cancer datasets identifies cross-cohort microbial diagnostic signatures and a link with choline degradation. Nat Med. 25(4):667–678. doi: 10.1038/s41591-019-0405-7.
  • Mo Z, Huang P, Yang C, Xiao S, Zhang G, Ling F, Li L. 2020. Meta-analysis of 16S rRNA microbial data identified distinctive and predictive microbiota dysbiosis in colorectal carcinoma adjacent tissue. mSystems. 5:e00138–00120. doi: 10.1128/mSystems.00138-20.
  • Cullin N, Azevedo Antunes C, Straussman R, Stein-Thoeringer CK, Elinav E. 2021. Microbiome and cancer. Cancer Cell. 39(10):1317–1341. doi: 10.1016/j.ccell.2021.08.006.
  • Wu Y, Jiao N, Zhu R, Zhang Y, Wu D, Wang A-J, Fang S, Tao L, Li Y, Cheng S, et al. 2021. Identification of microbial markers across populations in early detection of colorectal cancer. Nat Commun. 12(1):3063. doi: 10.1038/s41467-021-23265-y.
  • Lang S, Demir M, Martin A, Jiang L, Zhang X, Duan Y, Gao B, Wisplinghoff H, Kasper P, Roderburg C, et al. 2020. Intestinal virome signature associated with severity of nonalcoholic fatty liver disease. Gastroenterology. 159(5):1839–1852. doi: 10.1053/j.gastro.2020.07.005.
  • Zuo T, Lu X-J, Zhang Y, Cheung CP, Lam S, Zhang F, Tang W, Ching JYL, Zhao R, Chan PKS, et al. 2019. Gut mucosal virome alterations in ulcerative colitis. Gut. 68(7):1169–1179. doi: 10.1136/gutjnl-2018-318131.
  • Gao S, Gao X, Zhu R, Wu D, Feng Z, Jiao N, Sun R, Gao W, He Q, Liu Z, et al. 2023. Microbial genes outperform species and SNVs as diagnostic markers for Crohn’s disease on multicohort fecal metagenomes empowered by artificial intelligence. Gut Microbes. 15(1):2221428. doi: 10.1080/19490976.2023.2221428.
  • Coker OO, Nakatsu G, Dai RZ, Wu WKK, Wong SH, Ng SC, Chan FKL, Sung JJY, Yu J. 2019. Enteric fungal microbiota dysbiosis and ecological alterations in colorectal cancer. Gut. 68:654–662. doi: 10.1136/gutjnl-2018-317178.
  • Coker OO, Wu WKK, Wong SH, Sung JJY, Yu J. 2020. Altered gut archaea composition and interaction with bacteria are associated with colorectal cancer. Gastroenterology. 159:1459–1470.e1455. doi: 10.1053/j.gastro.2020.06.042.
  • Chen F, Li S, Guo R, Song F, Zhang Y, Wang X, Huo X, Lv Q, Ullah H, Wang G, et al. 2022. Meta-analysis of fecal viromes demonstrates high diagnostic potential of the gut viral signatures for colorectal cancer and adenoma risk assessment. J Adv Res. 103–114. doi: 10.1016/j.jare.2022.09.012.
  • Lin Y, Lau HCH, Liu Y, Kang X, Wang Y, Ting NLN, Kwong TNY, Han J, Liu W, Liu C, et al. 2022. Altered mycobiota signatures and enriched pathogenic aspergillus rambellii are associated with colorectal cancer based on multicohort fecal metagenomic analyses. Gastroenterology. 163(4):908–921. doi: 10.1053/j.gastro.2022.06.038.
  • Liu N-N, Jiao N, Tan J-C, Wang Z, Wu D, Wang A-J, Chen J, Tao L, Zhou C, Fang W, et al. 2022. Multi-kingdom microbiota analyses identify bacterial–fungal interactions and biomarkers of colorectal cancer across cohorts. Nat Microbiol. 7:238–250. doi: 10.1038/s41564-021-01030-7.
  • Tierney BT, Tan Y, Kostic AD, Patel CJ. 2021. Gene-level metagenomic architectures across diseases yield high-resolution microbiome diagnostic indicators. Nat Commun. 12(1):2907. doi: 10.1038/s41467-021-23029-8.
  • Heintz-Buschart A, Wilmes P. 2018. Human gut microbiome: function matters. Trends Microbiol. 26(7):563–574. doi: 10.1016/j.tim.2017.11.002.
  • Ma C, Chen K, Wang Y, Cen C, Zhai Q, Zhang J. 2021. Establishing a novel colorectal cancer predictive model based on unique gut microbial single nucleotide variant markers. Gut Microbes. 13:1–6. doi: 10.1080/19490976.2020.1869505.
  • Zhu Q, Hou Q, Huang S, Ou Q, Huo D, Vázquez-Baeza Y, Cen C, Cantu V, Estaki M, Chang H, et al. 2021. Compositional and genetic alterations in Graves’ disease gut microbiome reveal specific diagnostic biomarkers. ISME J. 15(11):3399–3411. doi: 10.1038/s41396-021-01016-7.
  • Wirbel J, Pyl PT, Kartal E, Zych K, Kashani A, Milanese A, Fleck JS, Voigt AY, Palleja A, Ponnudurai R, et al. 2019. Meta-analysis of fecal metagenomes reveals global microbial signatures that are specific for colorectal cancer. Nat Med. 25(4):679–689. doi: 10.1038/s41591-019-0406-6.
  • Lopez-Siles M, Duncan SH, Garcia-Gil LJ, Martinez-Medina M. 2017. Faecalibacterium prausnitzii: from microbiology to diagnostics and prognostics. ISME J. 11(4):841–852. doi: 10.1038/ismej.2016.176.
  • Kong C, Liang L, Liu G, Du L, Yang Y, Liu J, Shi D, Li X, Ma Y. 2022. Integrated metagenomic and metabolomic analysis reveals distinct gut-microbiome-derived phenotypes in early-onset colorectal cancer. Gut. 72:1129–1142. doi: 10.1136/gutjnl-2022-327156.
  • Yang Y, Du L, Shi D, Kong C, Liu J, Liu G, Li X, Ma Y. 2021. Dysbiosis of human gut microbiome in young-onset colorectal cancer. Nat Commun. 12. doi: 10.1038/s41467-021-27112-y.
  • Conche C, Greten FR. 2018. Fungi enter the stage of colon carcinogenesis. Immunity. 49(3):384–386. doi: 10.1016/j.immuni.2018.09.002.
  • Almeida A, Nayfach S, Boland M, Strozzi F, Beracochea M, Shi ZJ, Pollard KS, Sakharova E, Parks DH, Hugenholtz P, et al. 2021. A unified catalog of 204,938 reference genomes from the human gut microbiome. Nat Biotechnol. 39(1):105–114. doi: 10.1038/s41587-020-0603-3.
  • Sauna ZE, Kimchi-Sarfaty C. 2011. Understanding the contribution of synonymous mutations to human disease. Nat Rev Genet. 12(10):683–691. doi: 10.1038/nrg3051.
  • Jiao N, Baker SS, Chapa-Rodriguez A, Liu W, Nugent CA, Tsompana M, Mastrandrea L, Buck MJ, Baker RD, Genco RJ, et al. 2018. Suppressed hepatic bile acid signalling despite elevated production of primary and secondary bile acids in NAFLD. Gut. 67(10):1881–1891. doi: 10.1136/gutjnl-2017-314307.
  • Fan Y, Pedersen O. 2021. Gut microbiota in human metabolic health and disease. Nat Rev Microbiol. 19(1):55–71. doi: 10.1038/s41579-020-0433-9.
  • Wong CC, Yu J. 2023. Gut microbiota in colorectal cancer development and therapy. Nat Rev Clin Oncol. 20(7):429–452. doi: 10.1038/s41571-023-00766-x.
  • Okumura S, Konishi Y, Narukawa M, Sugiura Y, Yoshimoto S, Arai Y, Sato S, Yoshida Y, Tsuji S, Uemura K, et al. 2021. Gut bacteria identified in colorectal cancer patients promote tumourigenesis via butyrate secretion. Nat Commun. 12(1):5674. doi: 10.1038/s41467-021-25965-x.
  • Whiteley M, Diggle SP, Greenberg EP. 2017. Progress in and promise of bacterial quorum sensing research. Nature. 551(7680):313–320. doi: 10.1038/nature24624.
  • Goncheva MI, Flannagan RS, Sterling BE, Laakso HA, Friedrich NC, Kaiser JC, Watson DW, Wilson CH, Sheldon JR, McGavin MJ, et al. 2019. Stress-induced inactivation of the Staphylococcus aureus purine biosynthesis repressor leads to hypervirulence. Nat Commun. 10(1):775. doi: 10.1038/s41467-019-08724-x.
  • Satoh K, Yachida S, Sugimoto M, Oshima M, Nakagawa T, Akamoto S, Tabata S, Saitoh K, Kato K, Sato S, Igarashi K. 2017. Global metabolic reprogramming of colorectal cancer occurs at adenoma stage and is induced by MYC. Proceedings of the National Academy of Sciences 114, E7697–E7706.
  • Tjalsma H, Boleij A, Marchesi JR, Dutilh BE 2012. A bacterial driver-passenger model for colorectal cancer: beyond the usual suspects. Nat Rev Microbiol. 10:575–582. doi: 10.1038/nrmicro2819.
  • Avelar-Barragan J, DeDecker L, Lu ZN, Coppedge B, Karnes WE, Whiteson KL. 2022. Distinct colon mucosa microbiomes associated with tubular adenomas and serrated polyps. NPJ Biofilms Microbiomes. 8:69. doi: 10.1038/s41522-022-00328-6.
  • Feng Q, Liang S, Jia H, Stadlmayr A, Tang L, Lan Z, Zhang D, Xia H, Xu X, Jie Z, et al. 2015. Gut microbiome development along the colorectal adenoma–carcinoma sequence. Nat Commun. 6:6528. doi: 10.1038/ncomms7528.
  • Zeller G, Tap J, Voigt AY, Sunagawa S, Kultima JR, Costea PI, Amiot A, Böhm J, Brunetti F, Habermann N, et al. 2014. Potential of fecal microbiota for early‐stage detection of colorectal cancer. Mol Syst Biol. 10(11):766. doi: 10.15252/msb.20145645.
  • Yachida S, Mizutani S, Shiroma H, Shiba S, Nakajima T, Sakamoto T, Watanabe H, Masuda K, Nishimoto Y, Kubo M, et al. 2019. Metagenomic and metabolomic analyses reveal distinct stage-specific phenotypes of the gut microbiota in colorectal cancer. Nat Med. 25(6):968–976. doi: 10.1038/s41591-019-0458-7.
  • Hannigan GD, Duhaime MB, Ruffin MT, Koumpouras CC, Schloss PD. 2018. Diagnostic potential and interactive dynamics of the colorectal cancer virome. mBio. 9:e02248–02218. doi: 10.1128/mBio.02248-18.
  • Langmead B, Salzberg SL. 2012. Fast gapped-read alignment with Bowtie 2. Nat Methods. 9(4):357–359. doi: 10.1038/nmeth.1923.
  • Wood DE, Lu J, Langmead B. 2019. Improved metagenomic analysis with Kraken 2. Genome Biol. 20(1):257. doi: 10.1186/s13059-019-1891-0.
  • Lu J, Breitwieser FP, Thielen P, Salzberg SL. 2017. Bracken: estimating species abundance in metagenomics data. PeerJ Comput Sci. 3:e104. doi: 10.7717/peerj-cs.104.
  • Nayfach S, Rodriguez-Mueller B, Garud N, Pollard KS. 2016. An integrated metagenomics pipeline for strain profiling reveals novel patterns of bacterial transmission and biogeography. Genome Res. 26(11):1612–1625. doi: 10.1101/gr.201863.115.
  • Gao W, Chen W, Yin W, Zhu X, Gao S, Liu L, Wu D, Zhu R, Jiao N. 2022. Identification and validation of microbial biomarkers from cross-cohort datasets using xMarkerfinder.PROTOCOL (Version 1) Available At Protocol Exchange. doi: 10.21203/rs.3.pex-1984/v1.
  • Ma S. 2021. Mmuphin: meta-analysis methods with uniform pipeline for heterogeneity in microbiome studies. R package version 1.4.2
  • Ma S, Shungin D, Mallick H, Schirmer M, Nguyen LH, Kolde R, Franzosa E, Vlamakis H, Xavier R, Huttenhower C, et al. 2022. Population structure discovery in meta-analyzed microbial communities and inflammatory bowel disease using MMUPHin. Genome Biol. 23(1):208. doi: 10.1186/s13059-022-02753-4.
  • Chicco D, Jurman G. 2020. The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in binary classification evaluation. BMC Genom. 21(1):6. doi: 10.1186/s12864-019-6413-7.
  • Friedman J, Alm EJ, von Mering C. 2012. Inferring correlation networks from genomic survey data. PLoS Comput Biol. 8(9):e1002687. doi: 10.1371/journal.pcbi.1002687.
  • Ghazi AR, Sucipto K, Rahnavard A, Franzosa EA, McIver LJ, Lloyd-Price J, Schwager E, Weingart G, Moon YS, Morgan XC, Waldron L, Huttenhower C. High-sensitivity pattern discovery in large, paired multiomic datasets. Bioinformatics. 2022. Jun 24;38(Suppl 1):i378-i385. doi: 10.1093/bioinformatics/btac232
  • Oksanen J, Kindt R, Legendre P, O’Hara B, Stevens MH, Oksanen MJ, Suggests MA. 2020. Vegan: Community Ecology Package. R package version 2.5-7.
  • Mallick H, Rahnavard A, McIver L. 2020. Maaslin2. R package version 1.4.0.