926
Views
1
CrossRef citations to date
0
Altmetric
Research Paper

Campylobacter jejuni benefits from the bile salt deoxycholate under low-oxygen condition in a PldA dependent manner

ORCID Icon, ORCID Icon & ORCID Icon
Article: 2262592 | Received 07 Apr 2023, Accepted 20 Sep 2023, Published online: 28 Sep 2023

References

  • Wani AK, Akhtar N, Sher F, Navarrete AA, Américo-Pinheiro JHP. Microbial adaptation to different environmental conditions: molecular perspective of evolved genetic and cellular systems. Arch Microbiol. 2022;204(2):144. doi:10.1007/s00203-022-02757-5.
  • Duque-Correa M, Codron D, Meloro C, McGrosky A, Schiffmann C, Edwards MS, Clauss M. Mammalian intestinal allometry, phylogeny, trophic level and climate. Proc Biol Sci. 2021;288:20202888. doi:10.1098/rspb.2020.2888.
  • Dawson PA. Bile formation and the enterohepatic circulation. Physiol Gastrointestinal Track, 6th Ed. 2018;41:931–18. doi:10.1016/C2015-1-04889-X.
  • Ridlon JM, Kang DJ, Hylemon PB. Bile salt biotransformations by human intestinal bacteria. J Lipid Res. 2006;47:241–259. doi:10.1194/jlr.R500013-JLR200.
  • Cremers CM, Knoefler D, Vitvitsky V, Banerjee R, Jakob U. Bile salts act as effective protein-unfolding agents and instigators of disulfide stress in vivo. Proc Natl Acad Sci USA. 2014;111(16):E1610–E1619. doi:10.1073/pnas.1401941111.
  • Kristoffersen SM, Ravnum S, Tourasse NJ, Økstad OA, Kolstø A, Davies W. Low concentrations of bile salts induce stress responses and reduce motility in Bacillus cereus ATCC 14570. J Bacteriol. 2007;189(14):5302–5313. doi:10.1128/JB.00239-07.
  • Chiang JY. Bile acids: regulation of synthesis. J Lipid Res. 2009;50:1955–1966. doi:10.1194/jlr.R900010-JLR200.
  • Russell DW. The enzymes, regulation, and genetics of bile acid synthesis. Annu Rev Biochem. 2003;72:137–174. doi:10.1146/annurev.biochem.72.121801.161712.
  • Philipp B. Bacterial degradation of bile salts. Appl Microbiol Biotechnol. 2011;89:903–915. doi:10.1007/s00253-010-2998-0.
  • Swann JR, Want EJ, Geier FM, Spagou K, Wilson ID, Sidaway JE, Nicholson JK, Holmes E. Systemic gut microbial modulation of bile acid metabolism in host tissue compartments. Proc Natil Acad Sci U S A. 2011;Suppl 108(supplement_1):4523–4530. doi:10.1073/pnas.1006734107.
  • Ridlon JM, Kang DJ, Hylemon PB, Bajaj JS. Bile acids and the gut microbiome. Curr Opin Gastroenterol. 2014;30:332–338. doi:10.1097/MOG.0000000000000057.
  • Birkenmaier A, Holert J, Erdbrink H, Moeller HM, Friemel A, Schoenenberger R, Suter MJ, Klebensberger J, Philipp B. Biochemical and genetic investigation of initial reactions in aerobic degradation of the bile acid cholate in Pseudomonas sp. strain Chol1. J Bacteriol. 2007;189(20):7165–7173. doi:10.1128/JB.00665-07.
  • Urdaneta V, Casadesus J. Interactions between bacteria and bile salts in the gastrointestinal and hepatobiliary tracts. Front Med. 2017;4:163. doi:10.3389/fmed.2017.00163.
  • Faherty CS, Redman JC, Rasko DA, Barry EM, Nataro JP. Shigella flexneri effectors OspE1 and OspE2 mediate induced adherence to the colonic epithelium following bile salts exposure. Mol Microbiol. 2012;85:107–121. doi:10.1111/j.1365-2958.2012.08092.x.
  • Pope LM, Reed KE, Payne SM. Increased protein secretion and adherence to HeLa cells by Shigella spp. following growth in the presence of bile salts. Infect Immun. 1995;63(9):3642–3648. doi:10.1128/iai.63.9.3642-3648.1995.
  • Hung DT, Zhu J, Sturtevant D, Mekalanos JJ. Bile acids stimulate biofilm formation in Vibrio cholerae. Mol Microbiol. 2006;59(1):193–201. doi:10.1111/j.1365-2958.2005.04846.x.
  • Gupta S, Chowdhury R. Bile affects production of virulence factors and motility of Vibrio cholerae. Infect Immun. 1997;65(3):1131–1134. doi:10.1128/IAI.65.3.1131-1134.1997.
  • Gunn JS. Mechanisms of bacterial resistance and response to bile. Microbes Infect. 2000;2:907–913. doi:10.1016/s1286-4579(00)00392-0.
  • Lin J, Cagliero C, Guo B, Barton YW, Maurel MC, Payot S, Zhang Q. Bile salts modulate expression of the CmeABC multidrug efflux pump in Campylobacter jejuni. J Bacteriol. 2005;187(21):7417–7424. doi:10.1128/JB.187.21.7417-7424.2005.
  • Heithoff DM, Enioutina EY, Daynes RA, Sinsheimer RL, Low DA, Mahan MJ, Burns DL. Salmonella DNA adenine methylase mutants confer cross-protective immunity. Infect Immun. 2001;69(11):6725–6730. doi:10.1128/IAI.69.11.6725-6730.2001.
  • Prieto AI, Ramos-Morales F, Casadesus J. Repair of DNA damage induced by bile salts in Salmonella enterica. Genetics. 2006;174(2):575–584. doi:10.1534/genetics.106.060889.
  • Hernandez SB, Cota I, Ducret A, Aussel L, Casadesus J. Adaptation and preadaptation of Salmonella enterica to bile. PLoS Genet. 2012;8(1):e1002459. doi:10.1371/journal.pgen.1002459.
  • Giles DK, Hankins JV, Guan Z, Trent MS. Remodelling of the Vibrio cholerae membrane by incorporation of exogenous fatty acids from host and aquatic environments. Mol Microbiol. 2011;79:716–728. doi:10.1111/j.1365-2958.2010.07476.x.
  • Hermans D, Van Deun K, Martel A, Van Immerseel F, Messens W, Heyndrickx M, Haesebrouck F, Pasmans F. Colonization factors of Campylobacter jejuni in the chicken gut. Vet Res. 2011;42(1):82–82. doi:10.1186/1297-9716-42-82.
  • Lobo de Sa FD, Schulzke JD, Bucker R. Diarrheal mechanisms and the role of intestinal barrier dysfunction in Campylobacter infections. Curr Top Microbiol Immunol. 2021;431:203–231. doi:10.1007/978-3-030-65481-8_8.
  • Cao X, Brouwers J, van Dijk L, van de Lest C, Parker C, Huynh S, van Putten JP, Kelly DJ, Wösten MM. The unique phospholipidome of the enteric pathogen Campylobacter jejuni: lysophosholipids are required for motility at low oxygen availability. J Mol Biol. 2020;432(19):5244–5258. doi:10.1016/j.jmb.2020.07.012.
  • Cao X, van de Lest CHA, Huang LZX, van Putten JPM, Wösten M. Campylobacter jejuni permeabilizes the host cell membrane by short chain lysophosphatidylethanolamines. Gut Microbes. 2022;14(1):2091371. doi:10.1080/19490976.2022.2091371.
  • Colles SM, Chisolm GM. Lysophosphatidylcholine-induced cellular injury in cultured fibroblasts involves oxidative events. J Lipid Res. 2000;41(8):1188–1198. doi:10.1016/S0022-2275(20)33425-8.
  • Ziprin RL, Young CR, Byrd JA, Stanker LH, Hume ME, Gray SA, Kim BJ, Konkel ME. Role of Campylobacter jejuni potential virulence genes in cecal colonization. Avian Dis. 2001;45:549–557. doi:10.2307/1592894.
  • Talukdar PK, Crockett TM, Gloss LM, Huynh S, Roberts SA, Turner KL, Lewis STE, Herup-Wheeler TL, Parker CT, Konkel ME. The bile salt deoxycholate induces Campylobacter jejuni genetic point mutations that promote increased antibiotic resistance and fitness. Front Microbiol. 2022;13:1062464. doi:10.3389/fmicb.2022.1062464.
  • Begley M, Gahan CG, Hill C. The interaction between bacteria and bile. FEMS Microbiol Rev. 2005;29:625–651. doi:10.1016/j.femsre.2004.09.003.
  • Malik-Kale P, Parker CT, Konkel ME. Culture of Campylobacter jejuni with sodium deoxycholate induces virulence gene expression. J Bacteriol. 2008;190(7):2286–2297. doi:10.1128/JB.01736-07.
  • Palyada K, Sun YQ, Flint A, Butcher J, Naikare H, Stintzi A. Characterization of the oxidative stress stimulon and PerR regulon of Campylobacter jejuni. Bmc Genom. 2009;10(1):481–481. doi:10.1186/1471-2164-10-481.
  • Reid AN, Pandey R, Palyada K, Naikare H, Stintzi A. Identification of Campylobacter jejuni genes involved in the response to acidic pH and stomach transit. Appl Environ Microbiol. 2008;74(5):1583–1597. doi:10.1128/AEM.01507-07.
  • de Vries SP, Stefan PW, Linn A, Macleod K, MacCallum A, Hardy SP, Douce G, Watson E, Dagleish MP, Thompson H, et al. Analysis of Campylobacter jejuni infection in the gnotobiotic piglet and genome-wide identification of bacterial factors required for infection. Sci Rep. 2017;7(1):44283. doi:10.1038/srep44283.
  • Grabowska AD, Wandel MP, Łasica AM, Nesteruk M, Roszczenko P, Wyszyńska A, Godlewska R, Jagusztyn-Krynicka EK. Campylobacter jejuni dsb gene expression is regulated by iron in a Fur-dependent manner and by a translational coupling mechanism. BMC Microbiol. 2011;11(1):166. doi:10.1186/1471-2180-11-166.
  • Stahl M, Butcher J, Stintzi A. Nutrient acquisition and metabolism by Campylobacter jejuni. Front Cell Infect Microbiol. 2012;2:5. doi:10.3389/fcimb.2012.00005.
  • Gourley CR, Negretti NM, Konkel ME. The food-borne pathogen Campylobacter jejuni depends on the AddAB DNA repair system to defend against bile in the intestinal environment. Sci Rep. 2017;7(1):14777. doi:10.1038/s41598-017-14646-9.
  • Mazumder L, Hasan M, Rus’d AA, Islam MA. In-silico characterization and structure-based functional annotation of a hypothetical protein from Campylobacter jejuni involved in propionate catabolism. Genomics Inform. 2021;19(4):e43. doi:10.5808/gi.21043.
  • Davies C, Taylor AJ, Elmi A, Winter J, Liaw J, Grabowska AD, Gundogdu O, Wren BW, Kelly DJ, Dorrell N. Sodium taurocholate stimulates Campylobacter jejuni outer membrane vesicle production via down-regulation of the maintenance of lipid asymmetry pathway. Front Cell Infect Microbiol. 2019;9:177. doi:10.3389/fcimb.2019.00177.
  • Roier S, Zingl FG, Cakar F, Durakovic S, Kohl P, Eichmann TO, Klug L, Gadermaier B, Weinzerl K, Prassl R, et al. A novel mechanism for the biogenesis of outer membrane vesicles in Gram-negative bacteria. Nat Commun. 2016;7(1):10515. doi:10.1038/ncomms10515.
  • Li X, Li J, Hu X, Huang L, Xiao J, Chan J, Mi K. Differential roles of the hemerythrin-like proteins of mycobacterium smegmatis in hydrogen peroxide and erythromycin susceptibility. Sci Rep. 2015;5(1):16130. doi:10.1038/srep16130.
  • Holmes K, Mulholland F, Pearson BM, Pin C, McNicholl-Kennedy J, Ketley JM, Wells JM. Campylobacter jejuni gene expression in response to iron limitation and the role of Fur. Microbiol. 2005;151(1):243–257. doi:10.1099/mic.0.27412-0.
  • Palyada K, Threadgill D, Stintzi A. Iron acquisition and regulation in Campylobacter jejuni. J Bacteriol. 2004;186(14):4714–4729. doi:10.1128/JB.186.14.4714-4729.2004.
  • Gaynor EC, Wells DH, MacKichan JK, Falkow S. The Campylobacter jejuni stringent response controls specific stress survival and virulence-associated phenotypes. Mol Microbiol. 2005;56:8–27. doi:10.1111/j.1365-2958.2005.04525.x.
  • Gaynor EC, Cawthraw S, Manning G, MacKichan JK, Falkow S, Newell DG. The genome-sequenced variant of Campylobacter jejuni NCTC 11168 and the original clonal clinical isolate differ markedly in colonization, gene expression, and virulence-associated phenotypes. J Bacteriol. 2004;186(2):503–517. doi:10.1128/JB.186.2.503-517.2004.
  • Andersen MT, Brondsted L, Pearson BM, Mulholland F, Parker M, Pin C, Wells JM, Ingmer H. Diverse roles for HspR in Campylobacter jejuni revealed by the proteome, transcriptome and phenotypic characterization of an hspR mutant. Microbiol. 2005;151(3):905–915. doi:10.1099/mic.0.27513-0.
  • Pesci EC, Cottle DL, Pickett CL. Genetic, enzymatic, and pathogenic studies of the iron superoxide dismutase of Campylobacter jejuni. Infect Immun. 1994;62(7):2687–2694. doi:10.1128/iai.62.7.2687-2694.1994.
  • Kim JC, Oh E, Kim J, Jeon B. Regulation of oxidative stress resistance in Campylobacter jejuni, a microaerophilic foodborne pathogen. Front Microbiol. 2015;6:751. doi:10.3389/fmicb.2015.00751.
  • D’Aldebert E, Biyeyeme BMJ, Mergey M, Wendum D, Firrincieli D, Coilly A, Fouassier L, Corpechot C, Poupon R, Housset C, et al. Bile salts control the antimicrobial peptide cathelicidin through nuclear receptors in the human biliary epithelium. Gastroenterology. 2009;136(4):1435–1443. doi:10.1053/j.gastro.2008.12.040.
  • Silva J, Leite D, Fernandes M, Mena C, Gibbs PA, Teixeira P. Campylobacter spp. As a foodborne pathogen: a review. Front Microbiol. 2011;2:200. doi:10.3389/fmicb.2011.00200.
  • Man L, Dale AL, Klare WP, Cain JA, Sumer-Bayraktar Z, Niewold P, Solis N, Cordwell SJ. Proteomics of Campylobacter jejuni growth in deoxycholate reveals Cj0025c as a cystine transport protein required for wild-type human infection phenotypes. Molecular & Cellular Proteomics: MCP. 2020;19(8):1263–1280. doi:10.1074/mcp.RA120.002029.
  • Raphael BH, Pereira S, Flom GA, Zhang Q, Ketley JM, Konkel ME. The Campylobacter jejuni response regulator, CbrR, modulates sodium deoxycholate resistance and chicken colonization. J Bacteriol. 2005;187(11):3662–3670. doi:10.1128/JB.187.11.3662-3670.2005.
  • Singhal R, Shah YM. Oxygen battle in the gut: hypoxia and hypoxia-inducible factors in metabolic and inflammatory responses in the intestine. J Biol Chem. 2020;295(30):10493–10505. doi:10.1074/jbc.REV120.011188.
  • Bos MP, Tefsen B, Geurtsen J, Tommassen J. Identification of an outer membrane protein required for the transport of lipopolysaccharide to the bacterial cell surface. Proc Natl Acad Sci U S A. 2004;101:9417–9422. doi:10.1073/pnas.0402340101.
  • White SJ, McClung DM, Wilson JG, Roberts BN, Donaldson JR. Influence of pH on bile sensitivity amongst various strains of listeria monocytogenes under aerobic and anaerobic conditions. J Med Microbiol. 2015;64:1287–1296. doi:10.1099/jmm.0.000160.
  • van der Hoop G, Veringa EM. Cholecystitis caused by Campylobacter jejuni. Clin Infect Dis. 1993;17:133. doi:10.1093/clinids/17.1.133.
  • Drion S, Wahlen C, Taziaux P. Isolation of Campylobacter jejuni from the bile of a cholecystic patient. J Clin Microbiol. 1988;26:2193–2194. doi:10.1128/jcm.26.10.2193-2194.1988.
  • Darling WM, Peel RN, Skirrow MB, Mulira AE. Campylobacter cholecystitis. Lancet. 1979;1(8129):1302. doi:10.1016/s0140-6736(79)92269-4.
  • Philipp B, Erdbrink H, Suter MJ, Schink B. Degradation of and sensitivity to cholate in Pseudomonas sp. strain Chol1. Arch Microbiol. 2006;185(3):192–201. doi:10.1007/s00203-006-0085-9.
  • Hamner S, McInnerney K, Williamson K, Franklin MJ, Ford TE. Bile salts affect expression of Escherichia coli O157: H7 genes for virulence and iron acquisition, and promote growth under iron limiting conditions. PloS One. 2013;8(9):e74647. doi:10.1371/journal.pone.0074647.
  • Fiester SE, Arivett BA, Schmidt RE, Beckett AC, Ticak T, Carrier MV, Ghosh R, Ohneck EJ, Metz ML, Jeffries MKS, et al. Iron-regulated phospholipase C activity contributes to the cytolytic activity and virulence of Acinetobacter baumannii. PloS One. 2016;11(11):e0167068. doi:10.1371/journal.pone.0167068.
  • Caliskan M, Poschmann G, Gudzuhn M, Waldera-Lupa D, Molitor R, Strunk CH, Streit WR, Jaeger KE, Stühler K, Kovacic F. Pseudomonas aeruginosa responds to altered membrane phospholipid composition by adjusting the production of two-component systems, proteases and iron uptake proteins. Biochimica et biophysica acta Mol Cell Biol Lipids. 2023;1868(6):159317. doi:10.1016/j.bbalip.2023.159317.
  • Andrews SC, Robinson AK, Rodriguez-Quinones F. Bacterial iron homeostasis. FEMS Microbiol Rev. 2003;27(2–3):215–237. doi:10.1016/S0168-6445(03)00055-X.
  • Latifi A, Jeanjean R, Lemeille S, Havaux M, Zhang C. Iron starvation leads to oxidative stress in Anabaena sp. strain PCC 7120. J Bacteriol. 2005;187(18):6596–6598. doi:10.1128/JB.187.18.6596-6598.2005.
  • Yingping F, Lemeille S, Talla E, Janicki A, Denis Y, Zhang C, Latifi A. Unravelling the cross-talk between iron starvation and oxidative stress responses highlights the key role of PerR (alr0957) in peroxide signalling in the cyanobacterium nostoc PCC 7120. Environ Microbiol Rep. 2014;6(5):468–475. doi:10.1111/1758-2229.12157.
  • Leaden L, Silva LG, Ribeiro RA, Dos Santos NM, Lorenzetti APR, Alegria TGP, Schulz ML, Medeiros MHG, Koide T, Marques MV. Iron deficiency generates oxidative stress and activation of the SOS response in Caulobacter crescentus. Front Microbiol. 2018;9:2014. doi:10.3389/fmicb.2018.02014.
  • Naikare H, Palyada K, Panciera R, Marlow D, Stintzi A. Major role for FeoB in Campylobacter jejuni ferrous iron acquisition, gut colonization, and intracellular survival. Infect Immun. 2006;74(10):5433–5444. doi:10.1128/IAI.00052-06.
  • Gasaly N, de Vos P, Hermoso MA. Impact of bacterial metabolites on gut barrier function and host immunity: a focus on bacterial metabolism and its relevance for intestinal inflammation. Front Immunol. 2021;12:658354. doi:10.3389/fimmu.2021.658354.
  • Kaiser JC, Heinrichs DE, Garsin DA. Branching out: alterations in bacterial physiology and virulence due to branched-chain amino acid deprivation. mBio. 2018;9(5):e01188–18. doi:10.1128/mBio.01188-18.
  • Garcia CJ, Kosek V, Beltrán D, Tomás-Barberán FA, Hajslova J. Production of new microbially conjugated bile acids by human gut microbiota. Biomolecules. 2022;12(5):687. doi:10.3390/biom12050687.
  • Liu W, Wang Q, Chang J, Bhetuwal A, Bhattarai N, Ni X. Circulatory metabolomics reveals the association of the metabolites with clinical features in the patients with intrahepatic cholestasis of pregnancy. Front Physiol. 2022;13:1295. doi:10.3389/fphys.2022.848508.
  • Dorrell N, Martino MC, Stabler RA, Ward SJ, Zhang ZW, McColm AA, Farthing MJ, Wren BW. Characterization of Helicobacter pylori PldA, a phospholipase with a role in colonization of the gastric mucosa. Gastroenterology. 1999;117(5):1098–1104. doi:10.1016/s0016-5085(99)70394-x.
  • Banaś AM, Bocian-Ostrzycka KM, Dunin-Horkawicz S, Ludwiczak J, Wilk P, Orlikowska M, Wyszyńska A, Dąbrowska M, Plichta M, Spodzieja M, et al. Interplay between DsbA1, DsbA2 and C8J_1298 periplasmic oxidoreductases of Campylobacter jejuni and their impact on bacterial physiology and pathogenesis. Int J Mol Sci. 2021;22(24):13451. doi:10.3390/ijms222413451.
  • Grabowska AD, Wywiał E, Dunin-Horkawicz S, Łasica AM, Wösten MM, Nagy-Staroń A, Godlewska R, Bocian-Ostrzycka K, Pieńkowska K, Łaniewski P, et al. Functional and bioinformatics analysis of two Campylobacter jejuni homologs of the thiol-disulfide oxidoreductase, DsbA. PloS One. 2014;9(9):e106247. doi:10.1371/journal.pone.0106247.
  • Kobayashi T, Kishigami S, Sone M, Inokuchi H, Mogi T, Ito K. Respiratory chain is required to maintain oxidized states of the DsbA-DsbB disulfide bond formation system in aerobically growing Escherichia coli cells. Proc Natl Acad Sci U S A. 1997;94(22):11857–11862. doi:10.1073/pnas.94.22.11857.
  • Palmer SR, Gully PR, White JM, Pearson AD, Suckling WG, Jones DM, Rawes JC, Penner JL. Water-borne outbreak of Campylobacter gastroenteritis. Lancet. 1983;321(8319):287–290. doi:10.1016/s0140-6736(83)91698-7.
  • de Jonge EF, Balhuizen MD, van Boxtel R, Jianjun W, Haagsman HP, Tommassen J. Heat shock enhances outer-membrane vesicle release in bordetella spp. Curr Res Microb Sci. 2020;2:100009. doi:10.1016/j.crmicr.2020.100009.
  • Tsai CM, Frasch CE. A sensitive silver stain for detecting lipopolysaccharides in polyacrylamide gels. Anal Biochem. 1982;119:115–119. doi:10.1016/0003-2697(82)90673-x.
  • Karlyshev AV, Wren BW. Detection and initial characterization of novel capsular polysaccharide among diverse Campylobacter jejuni strains using alcian blue dye. J Clin Microbiol. 2001;39(1):279–284. doi:10.1128/JCM.39.1.279-284.2001.
  • Genovese C, D’Angeli F, Bellia F, Distefano A, Spampinato M, Attanasio F, Nicolosi D, Di Salvatore V, Tempera G, Lo Furno D, et al. In vitro antibacterial, anti-adhesive and anti-biofilm activities of Krameria lappacea (Dombey) burdet & B.B. Simpson root extract against methicillin-resistant Staphylococcus aureus strains. Antibiot (Basel). 2021;10(4):428. doi:10.3390/antibiotics10040428.
  • van der Stel AX, van de Lest CH, Huynh S, Parker CT, van Putten JP, Wösten MM. Catabolite repression in Campylobacter jejuni correlates with intracellular succinate levels. Environ Microbiol. 2018;20(4):1374–1388. doi:10.1111/1462-2920.14042.
  • van der Stel AX, van Mourik A, van Dijk L, Parker CT, Kelly DJ, van de Lest CH, van Putten JP, Wösten MM. The Campylobacter jejuni RacRS system regulates fumarate utilization in a low oxygen environment. Environ Microbiol. 2015;17(4):1049–1064. doi:10.1111/1462-2920.12476.
  • Schmittgen TD. Real-time quantitative PCR. Methods. 2001;25(4):383–385. doi:10.1006/meth.2001.1260.
  • Possik E, Pause A. Measuring oxidative stress resistance of Caenorhabditis elegans in 96-well microtiter plates. JoVe. 2015;9(99):e52746. doi:10.3791/52746.