924
Views
0
CrossRef citations to date
0
Altmetric
Research Paper

Magnetic chitin beads (MCB) coated with Vibrio cholerae reveals transcriptome dynamics in adult mice with a complex gut microbiota

, , , , , , , & ORCID Icon show all
Article: 2274125 | Received 07 Jun 2023, Accepted 18 Oct 2023, Published online: 07 Nov 2023

References

  • WHO. Cholera annual report 2020 weekly epidemiological record 37 September 2021. Sep 2021;96:445–18. https://www.who.int/health-topics/cholera#tab=tab_1.
  • Faruque SM, Mekalanos JJ. Pathogenicity islands and phages in vibrio cholerae evolution. Trends Microbiol. 2003;11(11):505–510. doi:10.1016/j.tim.2003.09.003.
  • Fan F, Liu Z, Jabeen N, Birdwell LD, Zhu J, Kan B. Enhanced interaction of vibrio cholerae virulence regulators TcpP and ToxR under oxygen-limiting conditions. Infect Immun. 2014;82(4):1676–1682. doi:10.1128/IAI.01377-13.
  • Wang H, Xing X, Wang J, Pang B, Liu M, Larios Valencia J, Liu T, Liu G, Xie S, Hao G, et al. Hypermutation-induced in vivo oxidative stress resistance enhances vibrio cholerae host adaptation. PLoS Pathog. 2018;14(10):e1007413. doi:10.1371/journal.ppat.1007413.
  • Davies BW, Bogard RW, Dupes NM, Gerstenfeld TAI, Simmons LA, Mekalanos JJ. DNA damage and reactive nitrogen species are barriers to Vibrio cholerae colonization of the infant mouse intestine. PLoS Pathog. 2011;7(2):e1001295. doi:10.1371/journal.ppat.1001295.
  • Kovacikova G, Lin W, Skorupski K. The LysR-type virulence activator AphB regulates the expression of genes in vibrio cholerae in response to low pH and anaerobiosis. J Bacteriol. 2010;192(16):4181–4191. doi:10.1128/JB.00193-10.
  • Lembke M, Pennetzdorfer N, Tutz S, Koller M, Vorkapic D, Zhu J, Schild S, Reidl J. Proteolysis of ToxR is controlled by cysteine-thiol redox state and bile salts in vibrio cholerae. Mol Microbiol. 2018;110(5):796–810. doi:10.1111/mmi.14125.
  • You JS, Yong JH, Kim GH, Moon S, Nam KT, Ryu JH, Yoon MY, Yoon SS. Commensal-derived metabolites govern vibrio cholerae pathogenesis in host intestine. Microbiome. 2019;7(1):132. doi:10.1186/s40168-019-0746-y.
  • Duperthuy M, Sjöström AE, Sabharwal D, Damghani F, Uhlin BE, Wai SN. Role of the Vibrio cholerae matrix protein Bap1 in cross-resistance to antimicrobial peptides. PLoS Pathog. 2013;9(10):e1003620. doi:10.1371/journal.ppat.1003620.
  • Weil AA, Becker RL, Harris JB, Papasian CJ. Vibrio cholerae at the intersection of immunity and the microbiome. mSphere. 2019;4(6). doi:10.1128/mSphere.00597-19.
  • Cho JY, Liu R, Macbeth JC, Hsiao A. The interface of vibrio cholerae and the gut microbiome. Gut Microbes. 2021;13(1):1937015. doi:10.1080/19490976.2021.1937015.
  • Hsiao A, Zhu J. Pathogenicity and virulence regulation of vibrio cholerae at the interface of host-gut microbiome interactions. Virulence. 2020;11(1):1582–1599. doi:10.1080/21505594.2020.1845039.
  • Qin Z, Yang X, Chen G, Park C, Liu Z. Crosstalks between gut microbiota and vibrio cholerae. Front Cell Infect Microbiol. 2020;10:582554. doi:10.3389/fcimb.2020.582554.
  • Hsiao A, Ahmed AMS, Subramanian S, Griffin NW, Drewry LL, Petri WA, Haque R, Ahmed T, Gordon JI. Members of the human gut microbiota involved in recovery from vibrio cholerae infection. Nature. 2014;515(7527):423–426. doi:10.1038/nature13738.
  • Zhao W, Caro F, Robins W, Mekalanos JJ. Antagonism toward the intestinal microbiota and its effect on vibrio cholerae virulence. Sci. 2018;359(6372):210–213. doi:10.1126/science.aap8775.
  • Pauer H, Teixeira FL, Robinson AV, Parente TE, De Melo MAF, Lobo LA, Domingues RMCP, Allen-Vercoe E, Ferreira RBR, Antunes LCM, et al. Bioactive small molecules produced by the human gut microbiome modulate vibrio cholerae sessile and planktonic lifestyles. Gut Microbes. 2021;13(1):1–19. doi:10.1080/19490976.2021.1918993.
  • Chen J, Byun H, Liu R, Jung IJ, Pu Q, Zhu CY, Tanchoco E, Alavi S, Degnan PH, Ma AT, et al. A commensal-encoded genotoxin drives restriction of vibrio cholerae colonization and host gut microbiome remodeling. Proc Natl Acad Sci U S A. 2022;119(11):e2121180119. doi:10.1073/pnas.2121180119.
  • Merrell DS, Butler SM, Qadri F, Dolganov NA, Alam A, Cohen MB, Calderwood SB, Schoolnik GK, Camilli A. Host-induced epidemic spread of the cholera bacterium. Nature. 2002;417(6889):642–645. doi:10.1038/nature00778.
  • Larocque RC, Harris JB, Dziejman M, Li X, Khan AI, Faruque ASG, Faruque SM, Nair GB, Ryan ET, Qadri F, et al. Transcriptional profiling of vibrio cholerae recovered directly from patient specimens during early and late stages of human infection. Infect Immun. 2005;73(8):4488–4493. doi:10.1128/IAI.73.8.4488-4493.2005.
  • Rivera-Chavez F, Mekalanos JJ. Cholera toxin promotes pathogen acquisition of host-derived nutrients. Nature. 2019;572(7768):244–248. doi:10.1038/s41586-019-1453-3.
  • Mandlik A, Livny J, Robins W, Ritchie J, Mekalanos J, Waldor M. RNA-Seq-based monitoring of infection-linked changes in vibrio cholerae gene expression. Cell Host & Microbe. 2011;10(2):165–174. doi:10.1016/j.chom.2011.07.007.
  • Liu Z, Wang H, Zhou Z, Naseer N, Xiang F, Kan B, Goulian M, Zhu J. Differential thiol-based switches jump-start vibrio cholerae pathogenesis. Cell Rep. 2016;14(2):347–354. doi:10.1016/j.celrep.2015.12.038.
  • Liu Z, Wang H, Zhou Z, Sheng Y, Naseer N, Kan B, Zhu J. Thiol-based switch mechanism of virulence regulator AphB modulates oxidative stress response in vibrio cholerae. Mol Microbiol. 2016;102(5):939–949. doi:10.1111/mmi.13524.
  • Stern AM, Hay AJ, Liu Z, Desland FA, Zhang J, Zhong Z, Zhu J. The NorR regulon is critical for vibrio cholerae resistance to nitric oxide and sustained colonization of the intestines. mBio. 2012;3(2):e00013–12. doi:10.1128/mBio.00013-12.
  • Dalile B, Van Oudenhove L, Vervliet B, Verbeke K. The role of short-chain fatty acids in microbiota–gut–brain communication. Nat Rev Gastroenterol Hepatol. 2019;16(8):461–478. doi:10.1038/s41575-019-0157-3.
  • Liu M, Hao G, Li Z, Zhou Y, Garcia-Sillas R, Li J, Wang H, Kan B, Zhu J. CitAB two-component system-regulated citrate utilization contributes to vibrio cholerae competitiveness with the gut microbiota. Infect Immun. 2019;87(3). doi:10.1128/IAI.00746-18.
  • Vidakovic L, Mikhaleva S, Jeckel H, Nisnevich V, Strenger K, Neuhaus K, Raveendran K, Ben-Moshe NB, Aznaourova M, Nosho K, et al. Biofilm formation on human immune cells is a multicellular predation strategy of vibrio cholerae. Cell. 2023;186(12):2690–2704.e20. doi:10.1016/j.cell.2023.05.008.
  • Lin CR, Chiang RK, Wang JS, Sung TW. Magnetic properties of monodisperse iron oxide nanoparticles. J Appl Phys. 2006;99(8):99. doi:10.1063/1.2172891.
  • Hu J, Xie M, Wen CY, Zhang ZL, Xie HY, Liu AA, Chen YY, Zhou SM, Pang DW. A multicomponent recognition and separation system established via fluorescent, magnetic, dualencoded multifunctional bioprobes. Biomater. 2011;32(4):1177–1184. doi:10.1016/j.biomaterials.2010.10.015.
  • Mutukuri TT, Maa YF, Gikanga B, Sakhnovsky R, Zhou QT. Electrostatic spray drying for monoclonal antibody formulation. Int J Pharm. 2021;607:120942. doi:10.1016/j.ijpharm.2021.120942.
  • Meibom KL, Li XB, Nielsen AT, Wu CY, Roseman S, Schoolnik GK. The vibrio cholerae chitin utilization program. Proc Natl Acad Sci U S A. 2004;101(8):2524–2529. doi:10.1073/pnas.0308707101.
  • Jones TH, Johns MW. Improved detection of F-specific RNA coliphages in fecal material by extraction and polyethylene glycol precipitation. Appl Environ Microbiol. 2009;75(19):6142–6146. doi:10.1128/AEM.00436-09.
  • Lewis GD, Metcalf TG. Polyethylene glycol precipitation for recovery of pathogenic viruses, including hepatitis a virus and human rotavirus, from oyster, water, and sediment samples. Appl Environ Microbiol. 1988;54(8):1983–1988. doi:10.1128/aem.54.8.1983-1988.1988.
  • Sanchez G, Elizaquivel P, Aznar R. A single method for recovery and concentration of enteric viruses and bacteria from fresh-cut vegetables. Int J Food Microbiol. 2012;152(1–2):9–13. doi:10.1016/j.ijfoodmicro.2011.10.002.
  • Luby CJ, Coughlin BP, Mace CR. Enrichment and recovery of mammalian cells from contaminated cultures using aqueous two-phase systems. Anal Chem. 2018;90(3):2103–2110. doi:10.1021/acs.analchem.7b04352.
  • Sheng Y, Fan F, Jensen O, Zhong Z, Kan B, Wang H, Zhu J. Dual zinc transporter systems in vibrio cholerae promote competitive advantages over gut microbiome. Infect Immun. 2015;83(10):3902–3908. doi:10.1128/IAI.00447-15.
  • Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS, Huttenhower C. Metagenomic biomarker discovery and explanation. Genome Biol. 2011;12(6):R60. doi:10.1186/gb-2011-12-6-r60.
  • Bueno E, Sit B, Waldor MK, Cava F. Anaerobic nitrate reduction divergently governs population expansion of the enteropathogen vibrio cholerae. Nature Microbiol. 2018;3(12):1346–1353. doi:10.1038/s41564-018-0253-0.
  • Vazquez-Torres A, Baumler AJ. Nitrate, nitrite and nitric oxide reductases: from the last universal common ancestor to modern bacterial pathogens. Curr Opin Microbiol. 2016;29:1–8. doi:10.1016/j.mib.2015.09.002.
  • Howard MF, Bina XR, Bina JE, Payne SM. Indole inhibits ToxR regulon expression in vibrio cholerae. Infect Immun. 2019;87(3). doi:10.1128/IAI.00776-18.
  • Higgins DA, Pomianek ME, Kraml CM, Taylor RK, Semmelhack MF, Bassler BL. The major vibrio cholerae autoinducer and its role in virulence factor production. Nature. 2007;450(7171):883–886. doi:10.1038/nature06284.
  • Alavi S, Mitchell JD, Cho JY, Liu R, Macbeth JC, Hsiao A. Interpersonal gut microbiome variation drives susceptibility and resistance to cholera infection. Cell. 2020;181(7):1533–1546.e13. doi:10.1016/j.cell.2020.05.036.
  • Joelsson A, Liu Z, Zhu J. Genetic and phenotypic diversity of quorum-sensing systems in clinical and environmental isolates of vibrio cholerae. Infect Immun. 2006;74(2):1141–1147. doi:10.1128/IAI.74.2.1141-1147.2006.
  • Yusof NL, Lim LY, Khor E. Preparation and characterization of chitin beads as a wound dressing precursor. J Biomed Mater Res. 2001;54(1):59–68. doi:10.1002/1097-4636(200101)54:1<59:AID-JBM7>3.0.CO;2-U.
  • Klindworth A, Pruesse E, Schweer T, Peplies J, Quast C, Horn M, Glöckner FO. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res. 2013;41(1):e1. doi:10.1093/nar/gks808.
  • Liu Z, Yang M, Peterfreund GL, Tsou AM, Selamoglu N, Daldal F, Zhong Z, Kan B, Zhu J. Vibrio cholerae anaerobic induction of virulence gene expression is controlled by thiol-based switches of virulence regulator AphB. Proc Natl Acad Sci U S A. 2011;108(2):810–815. doi:10.1073/pnas.1014640108.