3,267
Views
0
CrossRef citations to date
0
Altmetric
Research Paper

The impact of gut microbiome enterotypes on ulcerative colitis: identifying key bacterial species and revealing species co-occurrence networks using machine learning

, , & ORCID Icon
Article: 2292254 | Received 03 May 2023, Accepted 04 Dec 2023, Published online: 20 Dec 2023

References

  • Gajendran M, Loganathan P, Jimenez G, Catinella AP, Ng N, Umapathy C, Ziade N, Hashash JG. A comprehensive review and update on ulcerative colitis. Dis Mon. 2019;65:100851. doi:10.1016/j.disamonth.2019.02.004.
  • Fang J, Wang H, Zhou Y, Zhang H, Zhou H, Zhang X. Slimy partners: The mucus barrier and gut microbiome in ulcerative colitis. Exp Mol Med. 2021;53(5):772–20. doi:10.1038/s12276-021-00617-8.
  • Choi CH, Moon W, Kim YS, Kim ES, Lee B-I, Jung Y, Yoon YS, Lee H, Park DI, Han DS, et al. Second Korean guidelines for the management of ulcerative colitis. Intest Res. 2017;15(1):7. doi:10.5217/ir.2017.15.1.7.
  • Conrad K, Roggenbuck D, Laass MW. Diagnosis and classification of ulcerative colitis. Autoimmunity Rev Autoimmune Rev. 2014;13(4–5):463–466. doi:10.1016/j.autrev.2014.01.028.
  • Franzosa EA, Sirota-Madi A, Avila-Pacheco J, Fornelos N, Haiser HJ, Reinker S, Vatanen T, Hall AB, Mallick H, McIver LJ, et al. Gut microbiome structure and metabolic activity in inflammatory bowel disease. Nature Microbiol. 2019;4:293–305. doi:10.1038/s41564-018-0306-4.
  • Zakerska-Banaszak O, Tomczak H, Gabryel M, Baturo A, Wolko L, Michalak M, Malinska N, Mankowska-Wierzbicka D, Eder P, Dobrowolska A, et al. Dysbiosis of gut microbiota in Polish patients with ulcerative colitis: A pilot study. Sci Rep. 2021;11(1):1–13. doi:10.1038/s41598-021-81628-3.
  • Wu L, Tang Z, Chen H, Ren Z, Ding Q, Liang K, Sun Z. Mutual interaction between gut microbiota and protein/amino acid metabolism for host mucosal immunity and health. Anim Nutr. 2021;7:11–6. doi:10.1016/j.aninu.2020.11.003.
  • Dodd D, Spitzer MH, Van Treuren W, Merrill BD, Hryckowian AJ, Higginbottom SK, Le A, Cowan TM, Nolan GP, Fischbach MA, et al. A gut bacterial pathway metabolizes aromatic amino acids into nine circulating metabolites. Nature. 2017;551(7682):648–652. doi:10.1038/nature24661.
  • Arumugam M, Raes J, Pelletier E, Le Paslier D, Yamada T, Mende DR, Fernandes GR, Tap J, Bruls T, Batto J-M, et al. Enterotypes of the human gut microbiome. Nature. 2011;473(7346):174–180. doi:10.1038/nature09944.
  • Yang T-W, Lee W-H, Tu S-J, Huang W-C, Chen H-M, Sun T-H, Tsai M-C, Wang C-C, Chen H-Y, Huang C-C, et al. Enterotype-based analysis of gut microbiota along the conventional adenoma-carcinoma colorectal cancer pathway. Sci Rep. 2019;9(1):1–13. doi:10.1038/s41598-019-45588-z.
  • Wang J, Li W, Wang C, Wang L, He T, Hu H, Song J, Cui C, Qiao J, Qing L, et al. Enterotype bacteroides is associated with a high risk in patients with diabetes: a pilot study. J Diabetes Res. 2020;2020. doi:10.1155/2020/6047145.
  • Duvallet C, Gibbons SM, Gurry T, Irizarry RA, Alm EJ. Meta-analysis of gut microbiome studies identifies disease-specific and shared responses. Nat Commun. 2017;8(1):1784. doi:10.1038/s41467-017-01973-8.
  • Ghoul M, Mitri S. The ecology and evolution of microbial competition. Trends Microbiol. 2016;24(10):833–845. doi:10.1016/j.tim.2016.06.011.
  • Wang Y, Cao K-A L. PLSDA-batch: a multivariate framework to correct for batch effects in microbiome data. Brief Bioinform. 2023;24:bbac622. doi:10.1093/bib/bbac622.
  • Xiao L, Zhang F, Zhao F. Large-scale microbiome data integration enables robust biomarker identification. Nature Comp Sci. 2022;2:307–16. doi:10.1038/s43588-022-00247-8.
  • Ling W, Lu J, Zhao N, Lulla A, Plantinga AM, Fu W, Zhang A, Liu H, Song H, Li Z, et al. Batch effects removal for microbiome data via conditional quantile regression. Nature Comm. 2022;13:5418. doi:10.1038/s41467-022-33071-9.
  • Vandeputte D, Kathagen G, D’hoe K, Vieira-Silva S, Valles-Colomer M, Sabino J, Wang J, Tito RY, De Commer L, Darzi Y, et al. Quantitative microbiome profiling links gut community variation to microbial load. Nature. 2017;551(7681):507–511. doi:10.1038/nature24460.
  • Costea PI, Hildebrand F, Arumugam M, Bäckhed F, Blaser MJ, Bushman FD, de Vos WM, Ehrlich S, Fraser CM, Hattori M, et al. Enterotypes in the landscape of gut microbial community composition. Nature Microbiol. 2018;3:8–16. doi:10.1038/s41564-017-0072-8.
  • Hall AB, Yassour M, Sauk J, Garner A, Jiang X, Arthur T, Lagoudas GK, Vatanen T, Fornelos N, Wilson R, et al. A novel Ruminococcus gnavus clade enriched in inflammatory bowel disease patients. Genome Med. 2017;9(1):1–12. doi:10.1186/s13073-017-0490-5.
  • Henke MT, Kenny DJ, Cassilly CD, Vlamakis H, Xavier RJ, Clardy J. Ruminococcus gnavus, a member of the human gut microbiome associated with Crohn’s disease, produces an inflammatory polysaccharide. Proc Natl Acad Sci U S A. 2019;116(26):12672–12677. doi:10.1073/pnas.1904099116.
  • Rigottier-Gois L. Dysbiosis in inflammatory bowel diseases: the oxygen hypothesis. ISME J. 2013;7(7):1256–1261. doi:10.1038/ismej.2013.80.
  • Peng K, Xia S, Xiao S, Yu Q. Short‐chain fatty acids affect the development of inflammatory bowel disease through the intestinal barrier, immunology, and microbiota: a promising therapy? J Gastroenterol Hepatol. 2022;37:1710–8. doi:10.1111/jgh.15970.
  • Benítez-Páez A, Gómez Del Pugar EM, López-Almela I, Moya-Pérez Á, Codoñer-Franch P, Sanz Y, Turnbaugh PJ. Depletion of blautia species in the microbiota of obese children relates to intestinal inflammation and metabolic phenotype worsening. mSystems. 2020;5:e00857–19. doi:10.1128/mSystems.00857-19.
  • Bell A, Severi E, Lee M, Monaco S, Latousakis D, Angulo J, Thomas GH, Naismith JH, Juge N. Uncovering a novel molecular mechanism for scavenging sialic acids in bacteria. J Biol Chem. 2020;295:13724–36. doi:10.1074/jbc.RA120.014454.
  • Engevik MA, Engevik AC, Engevik KA, Auchtung JM, Chang-Graham AL, Ruan W, Luna RA, Hyser JM, Spinler JK, Versalovic J, et al. Mucin-degrading microbes release monosaccharides that chemoattract clostridioides difficile and facilitate colonization of the human intestinal mucus Layer. ACS Infect Dis. 2021;7:1126–42. doi:10.1021/acsinfecdis.0c00634.
  • Vich Vila A, Imhann F, Collij V, Jankipersadsing SA, Gurry T, Mujagic Z, Kurilshikov A, Bonder MJ, Jiang X, Tigchelaar EF, et al. Gut microbiota composition and functional changes in inflammatory bowel disease and irritable bowel syndrome. Sci Transl Med. 2018;10(472):eaap8914. doi:10.1126/scitranslmed.aap8914.
  • Lloyd-Price J, Arze C, Ananthakrishnan AN, Schirmer M, Avila-Pacheco J, Poon TW, Andrews E, Ajami NJ, Bonham KS, Brislawn CJ, et al. Multi-omics of the gut microbial ecosystem in inflammatory bowel diseases. Nature. 2019;569(7758):655–662. doi:10.1038/s41586-019-1237-9.
  • Hiippala K, Barreto G, Burrello C, Diaz-Basabe A, Suutarinen M, Kainulainen V, Bowers JR, Lemmer D, Engelthaler DM, Eklund KK, et al. Novel Odoribacter splanchnicus strain and its outer membrane vesicles exert immunoregulatory effects in vitro. Front Microbiol. 2020;11:575455. doi:10.3389/fmicb.2020.575455.
  • Kant R, Rasinkangas P, Satokari R, Pietilä TE, Palva A. Genome sequence of the butyrate-producing anaerobic bacterium Anaerostipes hadrus PEL 85. Genome Announc. 2015;3(2):e00224. doi:10.1128/genomeA.00224-15.
  • Xu W, Zhao T, Xiao H. The implication of oxidative stress and AMPK-Nrf2 antioxidative signaling in pneumonia pathogenesis. Front Endocrinol (Lausanne). 2020;11:400. doi:10.3389/fendo.2020.00400.
  • Abdugheni R, Wang WZ, Wang YJ, Du MX, Liu FL, Zhou N, Jiang C-Y, Wang C-Y, Wu L, Ma J, et al. Metabolite profiling of human‐originated Lachnospiraceae at the strain level. iMeta. 2022:e58. doi:10.1002/imt2.58.
  • Yilmaz B, Juillerat P, Øyås O, Ramon C, Bravo FD, Franc Y, Fournier N, Michetti P, Mueller C, Geuking M, et al. Microbial network disturbances in relapsing refractory Crohn’s disease. Nat Med. 2019;25(2):323–336. doi:10.1038/s41591-018-0308-z.
  • Reeves AE, Koenigsknecht MJ, Bergin IL, Young VB, McCormick BA. Suppression of Clostridium difficile in the gastrointestinal tracts of germ-free mice inoculated with a murine isolate from the family Lachnospiraceae. Infect Immun. 2012;80:3786–94. doi:10.1128/IAI.00647-12.
  • Wu S, Sun C, Li Y, Wang T, Jia L, Lai S, Yang Y, Luo P, Dai D, Yang Y-Q, et al. Gmrepo: a database of curated and consistently annotated human gut metagenomes. Nucleic Acids Res. 2020;48:D545–D53. doi:10.1093/nar/gkz764.
  • Harrison PW, Alako B, Amid C, Cerdeño-Tárraga A, Cleland I, Holt S, Hussein A, Jayathilaka S, Kay S, Keane T, et al. The European nucleotide archive in 2018. Nucleic Acids Res. 2019;47(D1):D84–D8. doi:10.1093/nar/gky1078.
  • Bolyen E, Rideout J R, Dillon M R. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2Nat Biotechnol. 2019;37(8):852–857.
  • Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2: High-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13(7):581–583. doi:10.1038/nmeth.3869.
  • Hsieh Y-P, Hung Y-M, Tsai M-H, Lai L-C, Chuang EY. 16S-ITGDB: An Integrated database for Improving species classification of Prokaryotic 16S ribosomal RNA sequences. Front Bioinform. 2022;2:905489. doi:10.3389/fbinf.2022.905489.
  • Balvočiūtė M, Huson DH. SILVA, RDP, Greengenes, NCBI and OTT—How do these taxonomies compare? BMC Genom. 2017;18:1–8. doi:10.1186/s12864-017-3501-4.
  • Lundberg SM, Lee S-I. A unified approach to interpreting model predictions. Adv Neural Inf Process Syst. 2017;30:4768–4777.
  • Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, et al. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol. 2009;75(23):7537–7541. doi:10.1128/AEM.01541-09.
  • Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS, Huttenhower C. Metagenomic biomarker discovery and explanation. Genome Biol. 2011;12:1–18. doi:10.1186/gb-2011-12-6-r60.
  • Shrestha MP, Taleban S. Colectomy rates are increasing among inpatients with concomitant ulcerative colitis and clostridioides difficile. J Clin Gastroenterol. 2021;55(8):709–715. doi:10.1097/MCG.0000000000001412.
  • Yang T-W, Lee W-H, Tu S-J, Huang W-C, Chen H-M, Sun T-H, Tsai M-C, Wang C-C, Chen H-Y, Huang C-C, et al. Enterotype-based analysis of gut microbiota along the conventional adenoma-carcinoma colorectal cancer pathway. Sci Rep. 2019;9(1):10923. doi:10.1038/s41598-019-45588-z.
  • Yousi F, Kainan C, Junnan Z, Chuanxing X, Lina F, Bangzhou Z, Jianlin R, Baishan F. Evaluation of the effects of four media on human intestinal microbiota culture in vitro. AMB Express. 2019;9:1–10. doi:10.1186/s13568-019-0790-9.
  • Dreier M, Berthoud H, Shani N, Wechsler D, Junier P. SpeciesPrimer: a bioinformatics pipeline dedicated to the design of qPCR primers for the quantification of bacterial species. PeerJ. 2020;8:e8544. doi:10.7717/peerj.8544.
  • Osman MA, Neoh H-M, Ab Mutalib N-S, Chin S-F, Mazlan L, Raja Ali RA, Zakaria AD, Ngiu CS, Ang MY, Jamal R. Parvimonas micra, Peptostreptococcus stomatis, Fusobacterium nucleatum and Akkermansia muciniphila as a four-bacteria biomarker panel of colorectal cancer. Sci Rep. 2021;11:2925. doi:10.1038/s41598-021-82465-0.