368
Views
0
CrossRef citations to date
0
Altmetric
Research Paper

Antigenic operon fragmentation and diversification mechanism in Bacteroidota impacts gut metagenomics and pathobionts in Crohn's disease microlesions

, , , , , & show all
Article: 2350150 | Received 20 Sep 2023, Accepted 26 Apr 2024, Published online: 06 Jun 2024

References

  • Parker BJ, Wearsch PA, Veloo ACM, Rodriguez-Palacios A. The genus alistipes: gut bacteria with emerging implications to inflammation, cancer, and mental health. Front Immunol. 2020;11:906. doi:10.3389/fimmu.2020.00906.
  • Ezeji J, Sarikonda D, Hopperton A, Erkkila H, Cohen D, Martinez S, Cominelli F, Kuwahara T, Dichosa A, Good C. et al., Parabacteroides distasonis: intriguing aerotolerant gut anaerobe with emerging antimicrobial resistance and pathogenic and probiotic roles in human health. Gut Microbes. 2021;13(1):1922241. doi:10.1080/19490976.2021.1922241.
  • Bank NC, Singh V, Rodriguez-Palacios A. Classification of parabacteroides distasonis and other Bacteroidetes using O- antigen virulence gene: RfbA-typing and hypothesis for pathogenic vs. probiotic strain differentiation. Gut Microbes. 2022;14(1):1997293. doi:10.1080/19490976.2021.1997293.
  • Nayfach S, Pollard KS. Average genome size estimation improves comparative metagenomics and sheds light on the functional ecology of the human microbiome. Genome Biol. 2015;16(1):51. doi:10.1186/s13059-015-0611-7.
  • Yang F, Kumar A, Davenport KW, Kelliher JM, Ezeji JC, Good CE, Jacobs MR, Conger M, West G, Fiocchi C. et al., Complete genome sequence of a Parabacteroides distasonis Strain (CavFT hAR46) isolated from a gut wall-cavitating microlesion in a patient with severe Crohn’s disease. Microbiol Resour Announc. 2019;8(36):36. doi:10.1128/MRA.00585-19.
  • Di Lorenzo F, Pither MD, Martufi M, Scarinci I, Guzmán-Caldentey J, Łakomiec E, Jachymek W, Bruijns SCM, Santamaría SM, Frick J-S. et al., Pairing bacteroides vulgatus LPS structure with its immunomodulatory effects on human cellular models. ACS Cent Sci. 2020;6(9):1602–26. doi:10.1021/acscentsci.0c00791.
  • Vatanen T, Kostic AD, d’Hennezel E, Siljander H, Franzosa EA, Yassour M, Kolde R, Vlamakis H, Arthur TD, Hämäläinen AM. et al., Variation in microbiome LPS immunogenicity contributes to autoimmunity in humans. Cell. 2016;165(4):842–853. doi:10.1016/j.cell.2016.04.007.
  • Lindberg AA, Weintraub A, Zähringer U, Rietschel ET. Structure-activity relationships in lipopolysaccharides of bacteroides fragilis. Rev Infect Dis. 1990;12 Suppl 2(Supplement_2):SS133–S141. doi:10.1093/clinids/12.supplement_2.s133.
  • Rajilić-Stojanović M, de Vos WM. The first 1000 cultured species of the human gastrointestinal microbiota. FEMS Microbiol Rev. 2014;38(5):996–1047. doi:10.1111/1574-6976.12075.
  • Eggerth AH, Gagnon BH. The bacteroides of human feces. J Bacteriol. 1933;25(4):389–413. doi:10.1128/jb.25.4.389-413.1933.
  • Chow J, Mazmanian SK. A pathobiont of the microbiota balances host colonization and intestinal inflammation. Cell Host Microbe. 2010;7(4):265–276. doi:10.1016/j.chom.2010.03.004.
  • Awadel-Kariem FM, Patel P, Kapoor J, Brazier JS, Goldstein EJ. First report of parabacteroides goldsteinii bacteraemia in a patient with complicated intra-abdominal infection. Anaerobe. 2010;16(3):223–225. doi:10.1016/j.anaerobe.2010.01.001.
  • Henthorne JC, Thompson L, Beaver DC. Gram-negative bacilli of the genus bacteroides. J Bacteriol. 1936;31(3):255–274. doi:10.1128/jb.31.3.255-274.1936.
  • Sun H, Guo Y, Wang H, Yin A, Hu J, Yuan T, Zhou S, Xu W, Wei P, Yin S. et al., Gut commensal parabacteroides distasonis alleviates inflammatory arthritis. Gut. 2023;72(9):1664–1677. doi:10.1136/gutjnl-2022-327756. © Author(s) (or their employer(s)) 2023. No commercial re-use. See rights and permissions. Published by BMJ. 2023.
  • Lai H-C, Lin T-L, Chen T-W, Kuo Y-L, Chang C-J, Wu T-R, Shu C-C, Tsai Y-H, Swift S, Lu C-C. Gut microbiota modulates COPD pathogenesis: role of anti-inflammatory parabacteroides goldsteinii lipopolysaccharide. Gut. 2022;71(2):309. doi:10.1136/gutjnl-2020-322599.
  • Honda K, Littman DR. The microbiome in infectious disease and inflammation. Annu Rev Immunol. 2012;30(1):759–795. doi:10.1146/annurev-immunol-020711-074937.
  • Kverka M, Zakostelska Z, Klimesova K, Sokol D, Hudcovic T, Hrncir T, Rossmann P, Mrazek J, Kopecny J, Verdu EF. et al., Oral administration of parabacteroides distasonis antigens attenuates experimental murine colitis through modulation of immunity and microbiota composition. Clin Exp Immunol. 2011;163(2):250–259. doi:10.1111/j.1365-2249.2010.04286.x.
  • Kelly D, Conway S, Aminov R. Commensal gut bacteria: mechanisms of immune modulation. Trends Immunol. 2005;26(6):326–333. doi:10.1016/j.it.2005.04.008.
  • Kelly D, Campbell JI, King TP, Grant G, Jansson EA, Coutts AG, Pettersson S, Conway S. Commensal anaerobic gut bacteria attenuate inflammation by regulating nuclear-cytoplasmic shuttling of PPAR-γ and RelA. Nat Immunol. 2004;5(1):104–112. doi:10.1038/ni1018.
  • Di Lorenzo F, De Castro C, Silipo A, Molinaro A. Lipopolysaccharide structures of Gram-negative populations in the gut microbiota and effects on host interactions. FEMS Microbiol Rev. 2019;43(3):257–272. Accessed 2023 Jan 10. doi:10.1093/femsre/fuz002.
  • d’Hennezel E, Abubucker S, Murphy Leon O, Cullen Thomas W, Lozupone C. Total lipopolysaccharide from the human gut microbiome silences toll-like receptor signaling. mSystems. 2017;2(6):e00046–e00017. Accessed 2023 Jan 13. doi:10.1128/mSystems.00046-17.
  • Duvallet C, Gibbons SM, Gurry T, Irizarry RA, Alm EJ. Meta-analysis of gut microbiome studies identifies disease-specific and shared responses. Nat Commun. 2017;8(1):1784. doi:10.1038/s41467-017-01973-8.
  • Rodriguez-Palacios A., Kodani T., Kaydo, L et al. Diagram illustrates co-existence of Enterobacteriaceae (red) and Bacteroidota (blue) in microlesions, and a peritonitis experiment in which mice received P. distasonis/Bacteroidota or E. coli/Enterobacteriaceae. Stereomicroscopic 3D-pattern profiling of murine and human intestinal inflammation reveals unique structural phenotypes. Nat Commun 6, 7577 (2015). doi:10.1038/ncomms8577.
  • Singh V, West G, Fiocchi C, Cominelli F, Good CE, Jacobs MR, Rodriguez-Palacios A. Genomes of bacteroides ovatus, B. cellulosilyticus, B. uniformis, phocaeicola vulgatus, and P. dorei isolated from gut cavernous fistulous tract micropathologies in Crohn’s disease. Microbiol Resour Announc. 2024:e0115223. doi:10.1128/mra.01152-23.
  • Singh V, West G, Fiocchi C, Good CE, Katz J, Jacobs MR, Dichosa AEK, Flask C, Wesolowski M, McColl C. et al., Clonal Parabacteroides from Gut Microfistulous Tracts as Transmissible Cytotoxic Succinate-Commensal Model of Crohn’s Disease Complications. bioRxiv. 2024. doi:10.1101/2024.01.09.574896.
  • Reeves PR, Hobbs M, Valvano MA, Skurnik M, Whitfield C, Coplin D, Kido N, Klena J, Maskell D, Raetz CR. et al., Bacterial polysaccharide synthesis and gene nomenclature. Trends Microbiol. 1996;4(12):495–503. doi:10.1016/s0966-842x(97)82912-5.
  • Peterson DA, Planer JD, Guruge JL, Xue L, Downey-Virgin W, Goodman AL, Seedorf H, Gordon JI. Characterizing the interactions between a naturally primed immunoglobulin a and its conserved bacteroides thetaiotaomicron species-specific epitope in gnotobiotic mice. J Biol Chem. 2015;290(20):12630–12649. doi:10.1074/jbc.M114.633800.
  • Roelofs KG, Coyne MJ, Gentyala RR, Chatzidaki-Livanis M, Comstock LE, Huffnagle GB. Bacteroidales secreted antimicrobial proteins target surface molecules necessary for gut colonization and mediate competition in vivo. mBio. 2016;7(4):10–128. doi:10.1128/mBio.01055-16.
  • Jacobson AN, Choudhury BP, Fischbach MA, Relman DA. The biosynthesis of lipooligosaccharide from bacteroides thetaiotaomicron. mBio. 2018;9(2):10–128. doi:10.1128/mBio.02289-17.
  • Li ZZ, Riegert AS, Goneau MF, Cunningham AM, Vinogradov E, Li J, Schoenhofen IC, Thoden JB, Holden HM, Gilbert M. Characterization of the dTDP-Fuc3N and dTDP-Qui3N biosynthetic pathways in campylobacter jejuni 81116. Glycobiology. 2017;27(4):358–369. doi:10.1093/glycob/cww136.
  • Koh GY, Kane A, Lee K, Xu Q, Wu X, Roper J, Mason JB, Crott JW. Parabacteroides distasonis attenuates toll-like receptor 4 signaling and akt activation and blocks colon tumor formation in high-fat diet-fed azoxymethane-treated mice. Int J Cancer. 2018;143(7):1797–1805. doi:10.1002/ijc.31559.
  • Jacobson AN, Choudhury BP, Fischbach MA, Relman DA. The biosynthesis of lipooligosaccharide from bacteroides thetaiotaomicron. MBio. 2018;9(2):e02289–02217. doi:10.1128/mBio.02289-17.
  • D’Souza JM, Samuel GN, Reeves PR. Evolutionary origins and sequence of the Escherichia coli O4 O-antigen gene cluster. FEMS Microbiol Lett. 2005;244(1):27–32. Accessed 2021 Jun 23. doi:10.1016/j.femsle.2005.01.012.
  • Bäckhed F, Normark S, Schweda EKH, Oscarson S, Richter-Dahlfors A. Structural requirements for TLR4-mediated LPS signalling: a biological role for LPS modifications. Microbes Infect. 2003;5(12):1057–1063. doi:10.1016/S1286-4579(03)00207-7.
  • Di Lorenzo F, Pither MD, Martufi M, Scarinci I, Guzmán-Caldentey J, Łakomiec E, Jachymek W, Bruijns SCM, Santamaría SM, Frick JS. et al., Pairing bacteroides vulgatus LPS structure with its immunomodulatory effects on human cellular models. ACS Cent Sci. 2020;6(9):1602–1616. doi:10.1021/acscentsci.0c00791.
  • Yoshida N, Emoto T, Yamashita T, Watanabe H, Hayashi T, Tabata T, Hoshi N, Hatano N, Ozawa G, Sasaki N. et al., Bacteroides vulgatus and bacteroides dorei reduce gut microbial lipopolysaccharide production and inhibit atherosclerosis. Circulation. 2018;138(22):2486–2498. doi:10.1161/CIRCULATIONAHA.118.033714.
  • Solovyev VV, Salamov A. Automatic annotation of microbial genomes and metagenomic sequences. In: Li RW. editor. Metagenomics and its applications in agriculture, biomedicine and environmental studies. NY, USA: Nova Science Publishers; 2011. pp. 61–78.
  • Taboada B, Estrada K, Ciria R, Merino E, Hancock J. Operon-mapper: a web server for precise operon identification in bacterial and archaeal genomes. Bioinformatics. 2018;34(23):4118–4120. Accessed 2023 Apr 18. doi:10.1093/bioinformatics/bty496.
  • Karp PD, Billington R, Caspi R, Fulcher CA, Latendresse M, Kothari A, Keseler IM, Krummenacker M, Midford PE, Ong Q. et al., The BioCyc collection of microbial genomes and metabolic pathways. Brief Bioinform. 2019;20(4):1085–1093. doi:10.1093/bib/bbx085.
  • Bertani B, Ruiz N, Slauch JM. Function and biogenesis of Lipopolysaccharides. EcoSal Plus. 2018;8(1):10–128. doi:10.1128/ecosalplus.ESP-0001-2018.
  • Rocha EPC. The organization of the bacterial genome. Annu Rev Genet. 2008;42(1):211–233. doi:10.1146/annurev.genet.42.110807.091653.
  • Okuda S, Yoshizawa AC. ODB: a database for operon organizations, 2011 update. Nucleic Acids Res. 2011;39(Database):D552–D555. doi:10.1093/nar/gkq1090. From NLM.
  • Taboada B, Ciria R, Martinez-Guerrero CE, Merino E. ProOpDB: Prokaryotic Operon DataBase. Nucleic Acids Res. 2012;40(D1):D627–D631. doi:10.1093/nar/gkr1020.
  • Mao X, Ma Q, Zhou C, Chen X, Zhang H, Yang J, Mao F, Lai W, Xu Y. DOOR 2.0: presenting operons and their functions through dynamic and integrated views. Nucleic Acids Res. 2013;42(D1):D654–D659. Accessed 2023 Jun 18. doi:10.1093/nar/gkt1048.
  • Groussin M, Poyet M, Sistiaga A, Kearney SM, Moniz K, Noel M, Hooker J, Gibbons SM, Segurel L, Froment A. et al., Elevated rates of horizontal gene transfer in the industrialized human microbiome. Cell. 2021;184(8):2053–2067.e2018. doi:10.1016/j.cell.2021.02.052.
  • Chamarande J, Cunat L, Alauzet C, Cailliez-Grimal C. In silico study of cell surface structures of parabacteroides distasonis involved in its maintenance within the gut microbiota. Int J Mol Sci. 2022;23(16):9411. doi:10.3390/ijms23169411.
  • Ondov BD, Bergman NH, Phillippy AM. Interactive metagenomic visualization in a web browser. BMC Bioinf. 2011;12(1):385. doi:10.1186/1471-2105-12-385.
  • Kanehisa M, Goto S, Kawashima S, Nakaya A. The KEGG databases at GenomeNet. Nucleic Acids Res. 2002;30(1):42–46. doi:10.1093/nar/30.1.42.
  • Cui W, Morrison DC, Silverstein R, Moore RN. Differential tumor necrosis factor alpha expression and release from peritoneal mouse macrophages in vitro in response to proliferating gram-positive versus gram-negative bacteria. Infect Immun. 2000;68(8):4422–4429. doi:10.1128/IAI.68.8.4422-4429.2000.
  • Kennedy MS, Zhang M, DeLeon O, Bissell J, Trigodet F, Lolans K, Temelkova S, Carroll KT, Fiebig A, Deutschbauer A. et al., Dynamic genetic adaptation of bacteroides thetaiotaomicron during murine gut colonization. Cell Rep. 2023;42(8):113009. doi:10.1016/j.celrep.2023.113009.
  • Koropatkin NM, Cameron EA, Martens EC. How glycan metabolism shapes the human gut microbiota. Nat Rev Microbiol. 2012;10(5):323–335. doi:10.1038/nrmicro2746.
  • Martens EC, Koropatkin NM, Smith TJ, Gordon JI. Complex Glycan Catabolism by the human gut microbiota: the Bacteroidetes Sus-like Paradigm. J Biol Chem. 2009;284(37):24673–24677. Accessed 2023 Mar 13. doi:10.1074/jbc.R109.022848.
  • Giulieri SG, Guérillot R, Duchene S, Hachani A, Daniel D, Seemann T, Davis JS, Tong SYC, Young BC, Wilson DJ. et al., Niche-specific genome degradation and convergent evolution shaping. Elife. 2022;11:11. doi:10.7554/eLife.77195.
  • Pinto C, Melo-Miranda R, Gordo I, Sousa A. The selective advantage of the lac operon for Escherichia coli is conditional on diet and microbiota composition. Front Microbiol. 2021;12:709259. doi:10.3389/fmicb.2021.709259.
  • Klena JD, Schnaitman CA. Function of the rfb gene cluster and the rfe gene in the synthesis of O antigen by shigella dysenteriae 1. Mol Microbiol. 1993;9(2):393–402. doi:10.1111/j.1365-2958.1993.tb01700.x.
  • Liu D, Reeves PR. Escherichia coli K12 regains its O antigen. Microbiol. 1994;140(Pt 1):49–57. doi:10.1099/13500872-140-1-49. From NLM.
  • Boels IC, Beerthuyzen MM, Kosters MH, Van Kaauwen MP, Kleerebezem M, De Vos WM. Identification and functional characterization of the Lactococcus lactis rfb operon, required for dTDP-rhamnose biosynthesis. J Bacteriol. 2004;186(5):1239–1248. doi:10.1128/JB.186.5.1239-1248.2004.
  • Liang J, Li X, Zha T, Chen Y, Hao H, Liu C, Duan R, Xiao Y, Su M, Wang X. et al., DTDP-rhamnosyl transferase RfbF, is a newfound receptor-related regulatory protein for phage phiYe-F10 specific for Yersinia enterocolitica serotype O: 3. Sci Rep. 2016;6(1):22905. doi:10.1038/srep22905.
  • Chao CM, Liu WL, Lai CC. Peritoneal dialysis peritonitis caused by bacteroides thetaiotaomicron. Perit Dial Int. 2013;33(6):711–712. doi:10.3747/pdi.2012.00229.
  • Faur D, García-Méndez I, Martín-Alemany N, Vallès-Prats M. Mono-bacterial peritonitis caused by bacteroides thetaiotaomicron in a patient on peritoneal dialysis. Nefrología (English Edition). 2012;32(5):694. doi:10.3265/Nefrologia.pre2012.Jun.11568.
  • Chao CT, Lee SY, Yang WS, Chen HW, Fang CC, Yen CJ, Chiang CK, Hung KY, Huang JW. Peritoneal dialysis peritonitis by anaerobic pathogens: a retrospective case series. BMC Nephrol. 2013;14(1):111. doi:10.1186/1471-2369-14-111. From NLM.
  • Montravers P, Gauzit R, Muller C, Marmuse JP, Fichelle A, Desmonts JM. Emergence of antibiotic-resistant bacteria in cases of peritonitis after intraabdominal surgery affects the efficacy of empirical antimicrobial therapy. Clin Infect Dis. 1996;23(3):486–494. doi:10.1093/clinids/23.3.486. From NLM.
  • Durazzi F, Sala C, Castellani G, Manfreda G, Remondini D, De Cesare A. Comparison between 16S rRNA and shotgun sequencing data for the taxonomic characterization of the gut microbiota. Sci Rep. 2021;11(1):3030. doi:10.1038/s41598-021-82726-y.
  • Fernández-Veledo S, Vendrell J. Gut microbiota-derived succinate: friend or foe in human metabolic diseases? Rev Endocr Metab Disord. 2019;20(4):439–447. doi:10.1007/s11154-019-09513-z.
  • Connors J, Dawe N, Van Limbergen J. The role of succinate in the Regulation of Intestinal Inflammation. Nutrients. 2018;11(1):25. doi:10.3390/nu11010025.
  • Metsalu T, Vilo J. ClustVis: a web tool for visualizing clustering of multivariate data using Principal component analysis and heatmap. Nucleic Acids Res. 2015;43(W1):W566–W570. Accessed 2021 Nov 11. doi:10.1093/nar/gkv468.
  • Basson AR, Cominelli F, Rodriguez-Palacios A. ‘Statistical irreproducibility’ does not improve with larger sample size: how to quantify and address disease data multimodality in human and animal research. J Pers Med. 2021;11(3):234. doi:10.3390/jpm11030234.
  • Alneberg J, Karlsson CMG, Divne A-M, Bergin C, Homa F, Lindh MV, Hugerth LW, Ettema TJG, Bertilsson S, Andersson AF. et al., Genomes from uncultivated prokaryotes: a comparison of metagenome-assembled and single-amplified genomes. Microbiome. 2018;6(1):173. doi:10.1186/s40168-018-0550-0.
  • Parrello B, Butler R, Chlenski P, Pusch GD, Overbeek R, Kalendar R. Supervised extraction of near-complete genomes from metagenomic samples: a new service in PATRIC. PLOS ONE. 2021;16(4):e0250092. doi:10.1371/journal.pone.0250092.
  • Davis JJ, Wattam AR, Aziz RK, Brettin T, Butler R, Butler RM, Chlenski P, Conrad N, Dickerman A, Dietrich EM. et al., The PATRIC Bioinformatics Resource Center: expanding data and analysis capabilities. Nucleic Acids Res. 2020;48(D1):D606–D612. doi:10.1093/nar/gkz943.
  • Olson RD, Assaf R, Brettin T, Conrad N, Cucinell C, Davis JJ, Dempsey DM, Dickerman A, Dietrich EM, Kenyon RW. et al., Introducing the bacterial and viral bioinformatics resource center (BV-BRC): a resource combining PATRIC, IRD and ViPR. Nucleic Acids Res. 2023;51(D1):D678–D689. doi:10.1093/nar/gkac1003.