664
Views
0
CrossRef citations to date
0
Altmetric
Research Paper

The impact of gestational diabetes on functional capacity of the infant gut microbiome is modest and transient

, , , , , , , & show all
Article: 2356277 | Received 27 Oct 2023, Accepted 13 May 2024, Published online: 26 May 2024

References

  • Iatcu CO, Steen A, Covasa M. Gut microbiota and complications of type-2 diabetes. Nutrients. 2021;14(1):166. doi:10.3390/nu14010166.
  • Carabotti M, Scirocco A, Maselli MA, Severi C. The gut-brain axis: interactions between enteric microbiota, central and enteric nervous systems. Ann Gastroenterol. 2015;28:203–17.
  • Moore RE, Townsend SD. Temporal development of the infant gut microbiome. Open Biol. 2019;9(9):190128. doi:10.1098/rsob.190128.
  • Gensollen T, Blumberg RS. Correlation between early life regulation of immune system by microbiota and allergy development. J Allergy Clin Immunol. 2017;139(4):1084–1091. doi:10.1016/j.jaci.2017.02.011.
  • Zhang H, Zhang Z, Liao Y, Zhang W, Tang D. The complex link and disease between the gut microbiome and the immune system in infants. Front Cell Infect Microbiol. 2022;12:924119. [accessed 2023 Oct 20]. doi:10.3389/fcimb.2022.924119.
  • Bäckhed F, Roswall J, Peng Y, Feng Q, Jia H, Kovatcheva-Datchary P, Li Y, Xia Y, Xie H, Zhong H. et al. Dynamics and stabilization of the human gut microbiome during the first year of life. Cell Host Microbe. 2015;17(5):690–703. doi:10.1016/j.chom.2015.04.004.
  • Homann CM, Rossel CAJ, Dizzell S, Bervoets L, Simioni J, Li J, Gunn E, Surette MG, de Souza RJ, Mommers M. et al. Infants’ first solid foods: impact on gut microbiota development in two intercontinental cohorts. Nutrients. 2021;13(8):2639. doi:10.3390/nu13082639.
  • Hu J, Nomura Y, Bashir A, Fernandez-Hernandez H, Itzkowitz S, Pei Z, Stone J, Loudon H, Peter I. Diversified microbiota of meconium is affected by maternal diabetes status. PLOS ONE. 2013;8(11):e78257. doi:10.1371/journal.pone.0078257.
  • Blotsky AL, Rahme E, Dahhou M, Nakhla M, Dasgupta K. Gestational diabetes associated with incident diabetes in childhood and youth: a retrospective cohort study. CMAJ. 2019;191(15):E410–E417. doi:10.1503/cmaj.181001.
  • Gajecka M, Gutaj P, Jaskiewicz K, Rydzanicz M, Szczapa T, Kaminska D, Kosewski G, Przyslawski J, Ploski R, Wender-Ozegowska E. et al. Effects of maternal type 1 diabetes and confounding factors on neonatal microbiomes. Diabetologia. 2024;67(2):312–326. doi:10.1007/s00125-023-06047-7.
  • Feig DS, Berger H, Donovan L. “Diabetes and pregnancy”. Diabetes Canada clinical practice guidelines expert committee. Can J Diabetes. 2018;42:S6–9.
  • Plows JF, Stanley JL, Baker PN, Reynolds CM, Vickers MH. The pathophysiology of gestational diabetes mellitus. Int J Mol Sci. 2018;19(11):3342. doi:10.3390/ijms19113342.
  • Scholtens DM, Kuang A, Lowe LP, Hamilton J, Lawrence JM, Lebenthal Y, Brickman WJ, Clayton P, Ma RC, McCance D. et al. Hyperglycemia and Adverse Pregnancy Outcome Follow-up Study (HAPO FUS): maternal glycemia and childhood glucose metabolism. Diabetes Care. 2019;42(3):381–392. doi:10.2337/dc18-2021.
  • Ponzo V, Fedele D, Goitre I, Leone F, Lezo A, Monzeglio C, Finocchiaro C, Ghigo E, Bo S. Diet-gut microbiota interactions and Gestational Diabetes Mellitus (GDM). Nutrients. 2019;11(2):E330. doi:10.3390/nu11020330.
  • Kc K, Shakya S, Zhang H. Gestational diabetes mellitus and Macrosomia: a literature review. Ann Nutr Metab. 2015;66(Suppl. 2):14–20. doi:10.1159/000371628.
  • Su M, Nie Y, Shao R, Duan S, Jiang Y, Wang M, Xing Z, Sun Q, Liu X, Xu W. et al. Diversified gut microbiota in newborns of mothers with gestational diabetes mellitus. PLOS ONE. 2018;13(10):e0205695. doi:10.1371/journal.pone.0205695.
  • Crusell MKW, Hansen TH, Nielsen T, Allin KH, Rühlemann MC, Damm P, Vestergaard H, Rørbye C, Jørgensen NR, Christiansen OB. et al. Comparative studies of the gut microbiota in the offspring of mothers with and without gestational diabetes. Front Cell Infect Microbiol. 2020;10:536282. doi:10.3389/fcimb.2020.536282.
  • Soderborg TK, Carpenter CM, Janssen RC, Weir TL, Robertson CE, Ir D, Young BE, Krebs NF, Hernandez TL, Barbour LA. et al. Gestational diabetes is uniquely associated with altered early seeding of the infant gut microbiota. Front Endocrinol (Lausanne). 2020;11:603021. doi:10.3389/fendo.2020.603021.
  • Gosalbes MJ, Compte J, Moriano-Gutierrez S, Vallès Y, Jiménez-Hernández N, Pons X, Artacho A, Francino MP. Metabolic adaptation in the human gut microbiota during pregnancy and the first year of life. EBioMedicine. 2019;39:497–509. doi:10.1016/j.ebiom.2018.10.071.
  • Vatanen T, Sakwinska O, Wilson B, Combremont S, Cutfield WS, Chan SY, Godfrey KM, Sakwinska O, Cutfield WS, Chan SY. et al. Transcription shifts in gut bacteria shared between mothers and their infants. Sci Rep. 2022;12(1):1276. doi:10.1038/s41598-022-04848-1.
  • Hugenholtz F, Ritari J, Nylund L, Davids M, Satokari R, de Vos WM. Feasibility of metatranscriptome analysis from infant gut microbiota: adaptation to solid foods results in increased activity of firmicutes at six months. Iran J Pediatr Hematol Oncol. 2017;2017:9547063. doi:10.1155/2017/9547063.
  • Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Huntley J, Fierer N, Owens SM, Betley J, Fraser L, Bauer M. et al. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. Isme J. 2012;6(8):1621–1624. doi:10.1038/ismej.2012.8.
  • Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2 | Nature Biotechnology. [accessed 2023 Sep 12]. https://www.nature.com/articles/s41587-019-0209-9.
  • Chen J, Li H, Hird SM, Chen M-H, Xu W, Maas K, Cong X. Sex differences in gut microbial development of preterm infant twins in early life: a longitudinal analysis. Front Cell Infect Microbiol. 2021;11:671074. doi:10.3389/fcimb.2021.671074.
  • Valeri F, Endres K. How biological sex of the host shapes its gut microbiota. Front Neuroendocrinol. 2021;61:100912. doi:10.1016/j.yfrne.2021.100912.
  • Wang Z, Neupane A, Vo R, White J, Wang X, Marzano SYL. Comparing gut microbiome in mothers’ own breast milk- and formula-fed moderate-late preterm infants. Front Microbiol. 2020;11:891. doi:10.3389/fmicb.2020.00891.
  • Taj B, Adeolu M, Xiong X, Ang J, Nursimulu N, Parkinson J. MetaPro: a scalable and reproducible data processing and analysis pipeline for metatranscriptomic investigation of microbial communities. Bioinformatics. 2021; doi:10.1101/2021.02.23.432558.
  • Beghini F, McIver LJ, Blanco-Míguez A, Dubois L, Asnicar F, Maharjan S, Mailyan A, Manghi P, Scholz M, Thomas AM. et al. Integrating taxonomic, functional, and strain-level profiling of diverse microbial communities with bioBakery 3. eLife. 2021;10:e65088. doi:10.7554/eLife.65088.
  • NCBI Resource Coordinators Agarwala R, Barrett T, Beck J, Benson DA, Bollin C, Bolton E, Bourexis D, Brister JR, Bryant SH, Canese K. et al. Database resources of the national center for biotechnology information. Nucleic Acids Res. 2018;46(D1):D8–D13. doi:10.1093/nar/gkx1095.
  • The UniProt Consortium Bateman A, Martin M-J, Orchard MJ, Magrane M, Agivetova R, Ahmad S, Alpi E, Bowler-Barnett EH, Britto R, Bursteinas B. et al. UniProt: the universal protein knowledgebase in 2021. Nucleic Acids Res. 2021;49(D1):D480–D489. doi:10.1093/nar/gkaa1100.
  • Menzel P, Ng KL, Krogh A. Fast and sensitive taxonomic classification for metagenomics with kaiju. Nat Commun. 2016;7(1):11257. doi:10.1038/ncomms11257.
  • Kim D, Song L, Breitwieser FP, Salzberg SL. Centrifuge: rapid and sensitive classification of metagenomic sequences. Genome Res. 2016;26(12):1721–1729. doi:10.1101/gr.210641.116.
  • Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, Minchin PR, O’hara RB, Simpson GL, Solymos P, Stevens MHH. et al. Vegan: community ecology package. 2020. https://CRAN.R-project.org/package=vegan.
  • Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15(12):550. doi:10.1186/s13059-014-0550-8.
  • Korotkevich G, Sukhov V, Budin N, Shpak B, Artyomov MN, Sergushichev A. Fast gene set enrichment analysis. bioRxiv. [accessed 2021 Feb 1]. 060012. doi:10.1101/060012.
  • Lin H, Peddada SD. Analysis of compositions of microbiomes with bias correction. Nat Commun. 2020;11(1):3514. doi:10.1038/s41467-020-17041-7.
  • Arbizu M. pairwiseAdonis: Pairwise multilevel comparison using adonis. Published online. 2020.
  • Andrews S. FastQC. 2019. https://www.bioinformatics.babraham.ac.uk/projects/fastqc/.
  • Damon C, Lehembre F, Oger-Desfeux C, Luis P, Ranger J, Fraissinet-Tachet L, Marmeisse R. Metatranscriptomics reveals the diversity of genes expressed by eukaryotes in forest soils. PLOS ONE. 2012;7(1):e28967. doi:10.1371/journal.pone.0028967.
  • Jorth P, Turner KH, Gumus P, Nizam N, Buduneli N, Whiteley M, Kolter R. Metatranscriptomics of the human oral microbiome during health and disease. mBio. 2014;5(2):10–128. doi:10.1128/mbio.01012-14.
  • Jiang Y, Xiong X, Danska J, Parkinson J. Metatranscriptomic analysis of diverse microbial communities reveals core metabolic pathways and microbiome-specific functionality. Microbiome. 2016;4(1):2. doi:10.1186/s40168-015-0146-x.
  • Asnicar F, Manara S, Zolfo M, Truong DT, Scholz M, Armanini F, Ferretti P, Gorfer V, Pedrotti A, Tett A, Segata N. et al. Studying vertical microbiome transmission from mothers to infants by strain-level metagenomic profiling. mSystems. 2017;2(1):081828. accessed 2016 Oct 21. doi:10.1128/mSystems.00164-16.
  • Lay C, Chu CW, Purbojati RW, Acerbi E, Drautz-Moses DI, de Sessions PF, Jie S, Ho E, Kok YJ, Bi X. et al. A synbiotic intervention modulates meta-omics signatures of gut redox potential and acidity in elective caesarean born infants. BMC Microbiol. 2021;21(1):191. doi:10.1186/s12866-021-02230-1.
  • Zou A, Nadeau K, Xiong X, Wang PW, Copeland JK, Lee JY, Pierre JS, Ty M, Taj B, Brumell JH. et al. Systematic profiling of the chicken gut microbiome reveals dietary supplementation with antibiotics alters expression of multiple microbial pathways with minimal impact on community structure. Microbiome. 2022;10(1):127. doi:10.1186/s40168-022-01319-7.
  • Xiong X, Bales ES, Ir D, Robertson CE, McManaman JL, Frank DN, Parkinson J. Perilipin-2 modulates dietary fat-induced microbial global gene expression profiles in the mouse intestine. Microbiome. 2017;5(1):117. doi:10.1186/s40168-017-0327-x.
  • The Gene Ontology Consortium. The Gene Ontology Resource: 20 years and still GOing strong. Nucleic Acids Res. 2019;47(D1):D330–D338. doi:10.1093/nar/gky1055.
  • Alcock BP, Raphenya AR, Lau TTY, Tsang KK, Bouchard M, Edalatmand A, Huynh W, Nguyen ALV, Cheng AA, Liu S. et al. CARD 2020: antibiotic resistome surveillance with the comprehensive antibiotic resistance database. Nucleic Acids Res. 2020;48(D1):D517–D525. doi:10.1093/nar/gkz935.
  • Drula E, Garron ML, Dogan S, Lombard V, Henrissat B, Terrapon N. The carbohydrate-active enzyme database: functions and literature. Nucleic Acids Res. 2022;50(D1):D571–D577. doi:10.1093/nar/gkab1045.
  • Wang J, Zheng J, Shi W, Du N, Xu X, Zhang Y, Ji P, Zhang F, Jia Z, Wang Y. et al. Dysbiosis of maternal and neonatal microbiota associated with gestational diabetes mellitus. Gut. 2018;67(9):1614–1625. doi:10.1136/gutjnl-2018-315988.
  • Ponzo V, Ferrocino I, Zarovska A, Amenta MB, Leone F, Monzeglio C, Rosato R, Pellegrini M, Gambino R, Cassader M. et al. The microbiota composition of the offspring of patients with gestational diabetes mellitus (GDM). Loor JJ, ed. PLOS ONE. 2019;14(12):e0226545. doi:10.1371/journal.pone.0226545.
  • Chen T, Qin Y, Chen M, Zhang Y, Wang X, Dong T, Chen G, Sun X, Lu T, White RA. et al. Gestational diabetes mellitus is associated with the neonatal gut microbiota and metabolome. BMC Med. 2021;19(1):120. doi:10.1186/s12916-021-01991-w.
  • Koren O, Goodrich JK, Cullender TC, Spor A, Laitinen K, Kling Bäckhed H, Gonzalez A, Werner J, Angenent L, Knight R. et al. Host remodeling of the gut microbiome and metabolic changes during pregnancy. Cell. 2012;150(3):470–480. doi:10.1016/j.cell.2012.07.008.
  • Stewart CJ, Embleton ND, Clements E, Luna PN, Smith DP, Fofanova TY, Nelson A, Taylor G, Orr CH, Petrosino JF. et al. Cesarean or vaginal birth does not impact the longitudinal development of the gut microbiome in a Cohort of exclusively preterm infants. Front Microbiol. 2017;8:1008. doi:10.3389/fmicb.2017.01008.
  • Bokulich NA, Chung J, Battaglia T, Henderson N, Jay M, Li H, Lieber DA, Wu F, Perez-Perez GI, Chen Y. et al. Antibiotics, birth mode, and diet shape microbiome maturation during early life. Sci Transl Med. 2016;8(343):ra34382–ra34382. doi:10.1126/scitranslmed.aad7121.
  • Lyu L, Zhou X, Zhang M, Liu L, Niu H, Zhang J, Chen S, Gong P, Jiang S, Pan J. et al. Delivery mode affects intestinal microbial composition and the development of intestinal epithelial cells. Front Microbiol. 2021;12:626144. doi:10.3389/fmicb.2021.626144.
  • Stinson LF, Payne MS, Keelan JA. A critical review of the bacterial baptism hypothesis and the impact of cesarean delivery on the infant microbiome. Front Med. 2018;5:135. doi:10.3389/fmed.2018.00135.
  • Reyman M, van Houten MA, van Baarle D, Bosch AATM, Man WH, Chu MLJN, Arp K, Watson RL, Sanders EAM, Fuentes S. et al. Impact of delivery mode-associated gut microbiota dynamics on health in the first year of life. Nat Commun. 2019;10(1):4997. doi:10.1038/s41467-019-13014-7.
  • Chu DM, Ma J, Prince AL, Antony KM, Seferovic MD, Aagaard KM. Maturation of the infant microbiome community structure and function across multiple body sites and in relation to mode of delivery. Nat Med. 2017;23(3):314–326. doi:10.1038/nm.4272.
  • Mitchell CM, Mazzoni C, Hogstrom L, Bryant A, Bergerat A, Cher A, Pochan S, Herman P, Carrigan M, Sharp K. et al. Delivery mode affects stability of early infant gut microbiota. Cell Rep Med. 2020;1(9):100156. doi:10.1016/j.xcrm.2020.100156.
  • Rutayisire E, Huang K, Liu Y, Tao F. The mode of delivery affects the diversity and colonization pattern of the gut microbiota during the first year of infants’ life: a systematic review. BMC Gastroenterol. 2016;16(1):86. doi:10.1186/s12876-016-0498-0.
  • Hill CJ, Lynch DB, Murphy K, Ulaszewska M, Jeffery IB, O’Shea CA, Watkins C, Dempsey E, Mattivi F, Tuohy K. et al. Evolution of gut microbiota composition from birth to 24 weeks in the INFANTMET Cohort. Microbiome. 2017;5(1):4. doi:10.1186/s40168-016-0213-y.
  • Cioffi CC, Tavalire HF, Neiderhiser JM, Bohannan B, Leve LD, Whisner C. History of breastfeeding but not mode of delivery shapes the gut microbiome in childhood. Whisner C, ed. PLOS ONE. 2020;15(7):e0235223. doi:10.1371/journal.pone.0235223.
  • Salminen S, Gibson GR, McCartney AL, Isolauri E. Influence of mode of delivery on gut microbiota composition in seven year old children. Gut. 2004;53(9):1388–1389. doi:10.1136/gut.2004.041640.
  • Matharu D, Ponsero AJ, Dikareva E, Korpela K, Kolho K-L, de Vos WM, Salonen A. Bacteroides abundance drives birth mode dependent infant gut microbiota developmental trajectories. Front Microbiol. 2022;13:953475. doi:10.3389/fmicb.2022.953475.
  • Azad MAK, Sarker M, Li T, Yin J. Probiotic species in the modulation of gut microbiota: an overview. Biomed Res Int. 2018;2018:9478630. doi:10.1155/2018/9478630.
  • Zhang X, Mushajiang S, Luo B, Tian F, Ni Y, Yan W. The composition and concordance of lactobacillus populations of infant gut and the corresponding breast-milk and maternal gut. Front Microbiol. 2020;11:11. [accessed 2023 Feb 14]. doi:10.3389/fmicb.2020.597911.
  • Härtel C, Pagel J, Spiegler J, Buma J, Henneke P, Zemlin M, Viemann D, Gille C, Gehring S, Frommhold D. et al. Lactobacillus acidophilus/Bifidobacterium infantis probiotics are associated with increased growth of VLBWI among those exposed to antibiotics. Sci Rep. 2017;7(1):5633. doi:10.1038/s41598-017-06161-8.
  • Fortmann I, Marißen J, Siller B, Spiegler J, Humberg A, Hanke K, Faust K, Pagel J, Eyvazzadeh L, Brenner K. et al. Lactobacillus Acidophilus/Bifidobacterium infantis probiotics are beneficial to extremely low gestational age infants fed human milk. Nutrients. 2020;12(3):850. doi:10.3390/nu12030850.
  • Lopez-Siles M, Duncan SH, Garcia-Gil LJ, Martinez-Medina M. Faecalibacterium prausnitzii: from microbiology to diagnostics and prognostics. ISME J. 2017;11(4):841–852. doi:10.1038/ismej.2016.176.
  • Zhang C, Li L, Jin B, Xu X, Zuo X, Li Y, Li Z. The effects of delivery mode on the gut microbiota and health: state of art. Front Microbiol. 2021;12:724449. [accessed 2023 Aug 21]. https://www.frontiersin.org/articles/10.3389/fmicb.2021.724449.
  • Masi AC, Stewart CJ. Untangling human milk oligosaccharides and infant gut microbiome. iScience. 2021;25(1):103542. doi:10.1016/j.isci.2021.103542.
  • Kijner S, Cher A, Yassour M. The infant gut commensal bacteroides dorei presents a generalized transcriptional response to various human milk oligosaccharides. Front Cell Infect Microbiol. 2022;12:854122. [accessed 2023 Feb 14]. doi:10.3389/fcimb.2022.854122.
  • Ho NT, Li F, Lee-Sarwar KA, Tun HM, Brown BP, Pannaraj PS, Bender JM, Azad MB, Thompson AL, Weiss ST. et al. Meta-analysis of effects of exclusive breastfeeding on infant gut microbiota across populations. Nat Commun. 2018;9(1):4169. doi:10.1038/s41467-018-06473-x.
  • Ma J, Li Z, Zhang W, Zhang C, Zhang Y, Mei H, Zhuo N, Wang H, Wang L, Wu D. et al. Comparison of gut microbiota in exclusively breast-fed and formula-fed babies: a study of 91 term infants. Sci Rep. 2020;10(1):15792. doi:10.1038/s41598-020-72635-x.
  • Moossavi S, Sepehri S, Robertson B, Bode L, Goruk S, Field CJ, Lix LM, de Souza RJ, Becker AB, Mandhane PJ. et al. Composition and variation of the human milk microbiota are influenced by maternal and early-life factors. Cell Host Microbe. 2019;25(2):324–335.e4. doi:10.1016/j.chom.2019.01.011.
  • Fettweis JM, Serrano MG, Brooks JP, Edwards DJ, Girerd PH, Parikh HI, Huang B, Arodz TJ, Edupuganti L, Glascock AL. et al. The vaginal microbiome and preterm birth. Nat Med. 2019;25(6):1012–1021. doi:10.1038/s41591-019-0450-2.
  • Sher Y, Olm MR, Raveh-Sadka T, Brown CT, Sher R, Firek B, Baker R, Morowitz MJ, Banfield JF. et al. Combined analysis of microbial metagenomic and metatranscriptomic sequencing data to assess in situ physiological conditions in the premature infant gut. PLOS ONE. 2020;15(3):e0229537. doi:10.1371/journal.pone.0229537.
  • Man B, Koenig MD, Bernabe BP, Nagelli U, Tussing-Humphreys L. The role of the gut microbiota in the prevention and management of gestational diabetes mellitus: are we there yet? J Perinat Neonatal Nurs. 2020;34(3):195–198. doi:10.1097/JPN.0000000000000497.
  • Rudman N, Gornik O, Lauc G. Altered N-glycosylation profiles as potential biomarkers and drug targets in diabetes. FEBS Lett. 2019;593(13):1598–1615. doi:10.1002/1873-3468.13495.
  • Lee CL, Chiu PCN, Pang PC, Chu IK, Lee K-F, Koistinen R, Koistinen H, Seppälä M, Morris HR, Tissot B. et al. Glycosylation failure extends to glycoproteins in gestational diabetes mellitus. Diabetes. 2011;60(3):909–917. doi:10.2337/db10-1186.
  • Sugino KY, Hernandez TL, Barbour LA, Kofonow JM, Frank DN, Friedman JE. A maternal higher-complex carbohydrate diet increases bifidobacteria and alters early life acquisition of the infant microbiome in women with gestational diabetes mellitus. Front Endocrinol. 2022;13:921464. [accessed 2023 Aug 21]. doi:10.3389/fendo.2022.921464.
  • Retnakaran R, Ye C, Hanley AJ, Connelly PW, Sermer M, Zinman B. Treatment of gestational diabetes mellitus and maternal risk of diabetes after pregnancy. Diabetes Care. 2023;46(3):587–592. doi:10.2337/dc22-1786.
  • Dong H, Nilsson L, Kurland CG. Co-variation of tRNA abundance and codon usage inEscherichia coliat different growth rates. J Mol Biol. 1996;260(5):649–663. doi:10.1006/jmbi.1996.0428.
  • Zhu Q, Yang X, Zhang Y, Shan C, Shi Z, Byndloss MX. Role of the gut microbiota in the increased infant body mass index induced by gestational diabetes mellitus. Byndloss MX, ed. mSystems. 2022;7(5):e00465–22. doi:10.1128/msystems.00465-22.
  • Huang H, Jiang J, Wang X, Jiang K, Cao H. Exposure to prescribed medication in early life and impacts on gut microbiota and disease development. EClinicalMedicine. 2024;68:68. doi:10.1016/j.eclinm.2024.102428.
  • Costea PI, Zeller G, Sunagawa S, Pelletier E, Alberti A, Levenez F, Tramontano M, Driessen M, Hercog R, Jung F-E. et al. Towards standards for human fecal sample processing in metagenomic studies. Nat Biotechnol. 2017;35(11):1069–1076. doi:10.1038/nbt.3960.
  • Han Z, Sun J, Lv A, Wang A. Biases from different DNA extraction methods in intestine microbiome research based on 16S rDNA sequencing: a case in the koi carp, cyprinus carpio var. Koi. Microbiologyopen. 2019;8(1):e00626. doi:10.1002/mbo3.626.
  • Scholes AN, Lewis JA. Comparison of RNA isolation methods on RNA-Seq: implications for differential expression and meta-analyses. BMC Genomics. 2020;21(1):249. doi:10.1186/s12864-020-6673-2.
  • Kers JG, Saccenti E. The power of microbiome studies: some considerations on which alpha and beta metrics to use and how to report results. Front Microbiol. 2022;12:796025. [accessed 2024 Feb 29]. doi:10.3389/fmicb.2021.796025.