689
Views
0
CrossRef citations to date
0
Altmetric
Research Paper

Heterologous expression and antimicrobial potential of class II bacteriocins

, , &
Article: 2369338 | Received 22 Dec 2023, Accepted 12 Jun 2024, Published online: 20 Jun 2024

References

  • Zacharof MP, Lovitt RW. Bacteriocins produced by lactic acid bacteria a review article. APCBEE Null, 3rd Int Conf Biotechnol Food Sci (ICBFS 2012). 2012 [2012 Apr 7–8]. 2(January):50–20. doi:10.1016/j.apcbee.2012.06.010.
  • Chikindas ML, Weeks R, Drider D, Chistyakov VA, Dicks LM. Functions and emerging applications of bacteriocins. Curr Opin Biotechnol. 2018;49(February):23–28. doi:10.1016/j.copbio.2017.07.011.
  • van Heel AJ, Montalban-Lopez M, Kuipers OP. Evaluating the feasibility of lantibiotics as an alternative therapy against bacterial infections in humans. Expert Opin Drug Metab Toxicol. 2011;7(6):675–680. doi:10.1517/17425255.2011.573478.
  • Rea MC, Sit CS, Clayton E, O’Connor PM, Whittal RM, Zheng J, Vederas JC, Paul Ross R, Hill C. Thuricin CD, a posttranslationally modified bacteriocin with a narrow spectrum of activity against clostridium difficile. Proc Natl Acad Sci USA. 2010;107(20):9352–9357. doi:10.1073/pnas.0913554107.
  • Des F, Blake T, Mathur H, Paula MOC, Paul DC, Paul Ross R, Hill C. Bioengineering nisin to overcome the nisin resistance protein. Mol Microbiol. 2019;111(3):717–731. doi:10.1111/mmi.14183.
  • Kheadr E, Zihler A, Dabour N, Lacroix C, Le Blay G, Fliss I. Study of the physicochemical and biological stability of pediocin PA-1 in the upper gastrointestinal tract conditions using a dynamic in vitro model. J Appl Microbiol. 2010;109(1):54–64. doi:10.1111/j.1365-2672.2009.04644.x.
  • Hernández-González JC, Martínez-Tapia A, Lazcano-Hernández G, García-Pérez BE, Castrejón-Jiménez NS. Bacteriocins from lactic acid bacteria. A powerful alternative as antimicrobials, probiotics, and immunomodulators in veterinary medicine. Animals. 2021;11(4):979. doi:10.3390/ani11040979.
  • Dabour N, Zihler A, Kheadr E, Lacroix C, Fliss I. In vivo study on the effectiveness of pediocin PA-1 and pediococcus acidilactici UL5 at inhibiting listeria monocytogenes. Int J Food Microbiol. 2009;133(3):225–233. doi:10.1016/j.ijfoodmicro.2009.05.005.
  • Fatima D. Characterization and determination of the factors affecting anti-listerial bacteriocins from lactobacillus plantarum and pediococcus pentosaceus isolated from dairy milk products. Afr J Food Sci. 2013;7(3):35–44. doi:10.5897/AJFS12.037.
  • Cotter PD, Hill C, Paul Ross R. Bacteriocins: developing innate immunity for food. Nat Rev Microbiol. 2005;3(10):777–788. doi:10.1038/nrmicro1273.
  • Soltani S, Hammami R, Cotter PD, Rebuffat S, Ben Said L, Gaudreau H, Bédard F, Biron E, Drider D, Fliss I. Bacteriocins as a new generation of antimicrobials: toxicity aspects and regulations. FEMS Microbiol Rev. 2021;45(1):fuaa039. doi:10.1093/femsre/fuaa039.
  • Dobson A, Crispie F, Rea MC, O’Sullivan O, Casey PG, Lawlor PG, Cotter PD, Ross P, Gardiner GE, Hill C. Fate and efficacy of lacticin 3147-producing Lactococcus Lactis in the mammalian gastrointestinal tract. FEMS Microbiol Ecol. 2011;76(3):602–614. doi:10.1111/j.1574-6941.2011.01069.x.
  • Umu ÖCO, Bäuerl C, Oostindjer M, Pope PB, Hernández PE, Pérez-Martínez G, Diep DB. The potential of class II bacteriocins to modify gut microbiota to improve host health. PLoS One. 2016;11(10):e0164036. doi:10.1371/journal.pone.0164036.
  • Heilbronner S, Krismer B, Brötz-Oesterhelt H, Peschel A. The microbiome-shaping roles of bacteriocins. Nat Rev Microbiol. 2021;19(11):726–739. doi:10.1038/s41579-021-00569-w.
  • Mesa-Pereira B, Rea MC, Cotter PD, Hill C, Paul Ross R. Heterologous expression of biopreservative bacteriocins with a view to low cost production. Front Microbiol. 2018 Jul. 9. doi:10.3389/fmicb.2018.01654.
  • Jia B, Ok Jeon C. High-throughput recombinant protein expression in Escherichia Coli: current status and future perspectives. Open Biol. 2016;6(8):160196. doi:10.1098/rsob.160196.
  • Walsh CJ, Guinane CM, Colin Hill RPR, O’Toole PW, Cotter PD. In silico identification of bacteriocin gene clusters in the gastrointestinal tract, based on the human microbiome project’s reference genome database. BMC Microbiol. 2015;15(1):183. doi:10.1186/s12866-015-0515-4.
  • Mesa-Pereira B, O’Connor PM, Rea MC, Cotter PD, Hill C, Paul Ross R. Controlled functional expression of the bacteriocins pediocin PA-1 and bactofencin a in Escherichia Coli. Sci Rep. 2017;7(1):3069. doi:10.1038/s41598-017-02868-w.
  • Zhang LH, Fath MJ, Mahanty HK, Tai PC, Kolter R. Genetic analysis of the colicin V secretion pathway. Genetics. 1995;141(1):25–32. doi:10.1093/genetics/141.1.25.
  • Mortzfeld BM, Palmer JD, Bhattarai SK, Dupre HL, Mercado-Lubio R, Silby MW, Bang C, McCormick BA, Bucci V. Microcin MccI47 selectively inhibits enteric bacteria and reduces carbapenem-resistant Klebsiella pneumoniae colonization in vivo when administered via an engineered live biotherapeutic. Gut Microbes. 2022;14(1):2127633. doi:10.1080/19490976.2022.2127633.
  • van Heel AJ, de Jong A, Montalbán-López M, Kok J, Kuipers OP. BAGEL3: automated identification of genes encoding bacteriocins and (non-)bactericidal posttranslationally modified peptides. Nucleic Acids Res. 2013;41(W1):W448–53. doi:10.1093/nar/gkt391.
  • Hammami R, Zouhir A, Le Lay C, Ben Hamida J, Fliss I. BACTIBASE second release: a database and tool platform for bacteriocin characterization. BMC Microbiol. 2010;10(January):22. doi:10.1186/1471-2180-10-22.
  • Sugrue I, O’Connor PM, Hill C, Stanton C, Paul Ross R, Comstock LE. Actinomyces produces defensin-like bacteriocins (Actifensins) with a Highly degenerate structure and broad antimicrobial activity. J Bacteriol. 2020;202(4):e00529–19. doi:10.1128/JB.00529-19.
  • Coyne MJ, Béchon N, Matano LM, Laclare McEneany V, Chatzidaki-Livanis M, Comstock LE. A family of anti-bacteroidales peptide toxins wide-spread in the human gut microbiota. Nat Commun. 2019;10(1):3460. doi:10.1038/s41467-019-11494-1.
  • Forster SC, Kumar N, Anonye BO, Almeida A, Viciani E, Stares MD, Dunn M, Mkandawire TT, Zhu A, Shao Y, et al. A human gut bacterial genome and culture collection for improved metagenomic analyses. Nat Biotechnol. 2019;37(2):186–192. doi:10.1038/s41587-018-0009-7.
  • Maier L, Pruteanu M, Kuhn M, Zeller G, Telzerow A, Anderson EE, Brochado AR, Fernandez KC, Dose H, Mori H, et al. Extensive impact of non-antibiotic drugs on human gut bacteria. Nature. 2018;555(7698):623–628. doi:10.1038/nature25979.
  • Maier L, Typas A. Systematically investigating the impact of medication on the gut microbiome. Curr Opin Microbiol. 2017;39(October):128–135. doi:10.1016/j.mib.2017.11.001.
  • Shetty SA, Hugenholtz F, Lahti L, Smidt H, de Vos WM. Intestinal microbiome landscaping: insight in community assemblage and implications for microbial modulation strategies. FEMS Microbiol Rev. 2017;41(2):182–199. doi:10.1093/femsre/fuw045.
  • Tramontano M, Andrejev S, Pruteanu M, Klünemann M, Kuhn M, Galardini M, Jouhten P, Zelezniak A, Zeller G, Bork P, et al. Nutritional preferences of human gut bacteria reveal their metabolic idiosyncrasies. Nat Microbiol. 2018;3(4):514–522. doi:10.1038/s41564-018-0123-9.
  • Rettedal E. Cultivation-based multiplex phenotyping of human gut microbiota allows targeted recovery of previously uncultured bacteria. Nat Commun. 2014;5(4714). doi:10.1038/ncomms5714.
  • Nielsen HB, Almeida M, Sierakowska Juncker A, Rasmussen S, Li J, Sunagawa S, Plichta DR, Gautier L, Pedersen AG, Le Chatelier E, et al. Identification and assembly of genomes and genetic elements in complex metagenomic samples without using reference genomes. Nat Biotechnol. 2014;32(8):822–828. doi:10.1038/nbt.2939.
  • Armetta J, Schantz-Klausen M, Shepelin D, Vazquez-Uribe R, Iain Bahl M, Laursen MF, Licht TR, Sommer MOA. Escherichia Coli promoters with consistent expression throughout the murine gut. ACS Synth Biol. 2021;10(12):3359–3368. doi:10.1021/acssynbio.1c00325.
  • Freudl R, Klose M, Henning U. Export and sorting of the Escherichia coli outer membrane protein OmpA. J Bioenerg Biomembr. 1990;22(3):441–449. doi:10.1007/BF00763176.
  • Gibson DG, Young L, Chuang R-Y, Venter JC, Hutchison CA, Smith HO. Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods. 2009;6(5):343–345. doi:10.1038/nmeth.1318.
  • “Common Taxonomy Tree. n.d [Accessed 2023 Apr 28]. https://www.ncbi.nlm.nih.gov/Taxonomy/CommonTree/wwwcmt.cgi.
  • Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, Li W, Lopez R, McWilliam H, Remmert M, Söding J, et al. Fast, scalable generation of high-quality protein multiple sequence alignments using clustal omega. Mol Syst Biol. 2011;7(1):539. doi:10.1038/msb.2011.75.
  • “16s-Metagenomic-Library-Prep-Guide-15044223-b.Pdf. n.d [Accessed 2023 Jan 9]. https://emea.illumina.com/content/dam/illumina-support/documents/documentation/chemistry_documentation/16s/16s-metagenomic-library-prep-guide-15044223-b.pdf.
  • “Metadata in QIIME 2 — QIIME 2 2022.8.3 Documentation. n.d [Accessed 2023 Jan 10]. https://docs.qiime2.org/2022.8/tutorials/metadata/.
  • Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2: high-resolution sample inference from illumina amplicon data. Nat Methods. 2016;13(7):581–583. doi:10.1038/nmeth.3869.
  • Jacobi CA, Malfertheiner P. Escherichia Coli Nissle 1917 (Mutaflor): new insights into an old probiotic bacterium. Dig Dis. 2011;29(6):600–607. doi:10.1159/000333307.
  • Salis HM, Mirsky EA, Voigt CA. Automated design of synthetic ribosome binding sites to control protein expression. Nat Biotechnol. 2009;27(10):946–950. doi:10.1038/nbt.1568.
  • Percie du Sert N, Ahluwalia A, Alam S, Avey MT, Baker M, Browne WJ, Clark A, Cuthill IC, Dirnagl U, Emerson M, et al. Reporting animal research: explanation and elaboration for the ARRIVE guidelines 2.0. PLoS Biol. 2020;18(7):e3000411. doi:10.1371/journal.pbio.3000411.
  • Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, Tunyasuvunakool K, Bates R, Žídek A, Potapenko A, et al. Highly accurate protein structure prediction with AlphaFold. Nature. 2021;596(7873):583–589. doi:10.1038/s41586-021-03819-2.
  • Blum-Oehler G, Oswald S, Eiteljörge K, Sonnenborn U, Schulze J, Kruis W, Hacker J. Development of strain-specific PCR reactions for the detection of the probiotic Escherichia Coli Strain Nissle 1917 in fecal samples. Res Microbiol. 2003;154(1):59–66. doi:10.1016/S0923-2508(02)00007-4.
  • Zainuddin HS, Bai Y, Mansell TJ. CRISPR-Based curing and analysis of metabolic burden of cryptic plasmids in Escherichia Coli Nissle 1917. Eng Life Sci. 2019;19(6):478–485. doi:10.1002/elsc.201900003.
  • Yi Y, Li P, Zhao F, Zhang T, Shan Y, Wang X, Liu B, Chen Y, Zhao X, Lü X. Current status and potentiality of Class II bacteriocins from lactic acid bacteria: structure, mode of action and applications in the food industry. Trends Food Sci Technol. 2022;120(February):387–401. doi:10.1016/j.tifs.2022.01.018.
  • Moro-García MA, Alonso-Arias R, Baltadjieva M, Fernández Benítez C, Fernández Barrial MA, Díaz Ruisánchez E, Alonso Santos R, Álvarez Sánchez M, Saavedra Miján J, López-Larrea C. Oral supplementation with Lactobacillus Delbrueckii Subsp. Bulgaricus 8481 enhances systemic immunity in elderly subjects. Age. 2013;35(4):1311–1326. doi:10.1007/s11357-012-9434-6.
  • Sugawara T, Sawada D, Yanagihara S, Aoki Y, Takehara I, Sugahara H, Hirota T, Nakamura Y, Ishikawa S. Daily Intake of Paraprobiotic Lactobacillus Amylovorus CP1563 improves pre-obese conditions and affects the gut microbial community in healthy pre-obese subjects: a double-blind, randomized, placebo-controlled study. Microorganisms. 2020;8(2):304. doi:10.3390/microorganisms8020304.
  • “COBALT:Multiple Alignment Tool. n.d [Accessed 2023 Apr 28]. https://www.ncbi.nlm.nih.gov/tools/cobalt/re_cobalt.cgi.
  • Ennahar S, Sashihara T, Sonomoto K, Ishizaki A. Class IIa bacteriocins: biosynthesis, structure and activity. FEMS Microbiol Rev. 2000;24(1):85–106. doi:10.1111/j.1574-6976.2000.tb00534.x.
  • Shapiro J, Cohen NA, Shalev V, Uzan A, Koren O, Maharshak N. Psoriatic patients have a distinct structural and functional fecal microbiota compared with controls. J Dermatol. 2019;46(7):595–603. doi:10.1111/1346-8138.14933.
  • Liu Z, Li J, Liu H, Tang Y, Zhan Q, Lai W, Ao L, Meng X, Ren H, Xu D, et al. The intestinal microbiota associated with cardiac valve calcification differs from that of coronary artery disease. Atherosclerosis. 2019;284(May):121–128. doi:10.1016/j.atherosclerosis.2018.11.038.
  • Wang Y, Wan X, Wu X, Zhang C, Liu J, Hou S. Eubacterium rectale contributes to colorectal cancer initiation via promoting colitis. Gut Pathog. 2021;13(1):2. doi:10.1186/s13099-020-00396-z.
  • Li S, Wang C, Zhang C, Luo Y, Cheng Q, Yu L, Sun Z. Evaluation of the effects of different bacteroides vulgatus strains against DSS-Induced colitis. J Immunol Res. 2021;2021(May):1–15. doi:10.1155/2021/9117805.
  • Biologicals D. ANTIBIOTIC DISKS (COLISTIN, KANAMYCIN, VANCOMYCIN). 2014. http://www.dalynn.com/dyn/ck_assets/files/tech/DC60.pdf.
  • Rosenbladt J. Comparison of methods for isolation of anaerobic bacteria from clinical specimens. Appl Microbiol. 1973 Jan;25(1):77–85. doi:10.1128/am.25.1.77-85.1973.
  • Eijsink VGH, Axelsson L, Diep DB, Håvarstein LS, Holo H, Nes IF. Production of class II bacteriocins by lactic acid bacteria; an example of biological warfare and communication. null van null. 2002;81(1–4):639–654. doi:10.1023/A:1020582211262.
  • Campedelli I, Mathur H, Salvetti E, Clarke S, Rea MC, Torriani S, Ross RP, Hill C, O’Toole PW, Björkroth J. Genus-wide assessment of antibiotic resistance in lactobacillus spp. Appl Environ Microbiol, 2019;85(1). doi:10.1128/AEM.01738-18.
  • Rossi F, Amadoro C, Gasperi M, Colavita G. Lactobacilli infection case reports in the last three years and safety implications. Nutrients. 2022;14(6):1178. doi:10.3390/nu14061178.
  • Kuraji R, Shiba T, Dong T, Numabe Y, Kapila Y. Periodontal treatment and microbiome-targeted therapy in management of periodontitis-related nonalcoholic fatty liver disease with oral and gut dysbiosis. World J Gastroenterol. 2023;29(February):967–996. doi:10.3748/wjg.v29.i6.967.
  • Meijnikman AS, Davids M, Herrema H, Aydin O, Tremaroli V, Rios-Morales M, Levels H. Microbiome-derived ethanol in nonalcoholic fatty liver disease. Nat Med. 2022 Oct. 1–7. doi:10.1038/s41591-022-02016-6.
  • Walter J. Ecological role of lactobacilli in the gastrointestinal tract: implications for fundamental and biomedical research. Appl Environ Microb. 2008;74(16):4985–4996. doi:10.1128/AEM.00753-08.
  • Grauke LJ, Kudva IT, Won Yoon J, Hunt CW, Williams CJ, Hovde CJ. Gastrointestinal tract location of Escherichia Coli O157: H7 in ruminants. Appl Environ Microb. 2002;68(5):2269–2277. doi:10.1128/AEM.68.5.2269-2277.2002.
  • Béchon N, Ghigo J-M. Gut biofilms: bacteroides as model symbionts to study biofilm formation by intestinal anaerobes. FEMS Microbiol Rev. 2022;46(2):fuab054. doi:10.1093/femsre/fuab054.
  • Song A-L, In LLA, Hua Erin Lim S, Abdul Rahim R. A review on Lactococcus Lactis: from food to factory. Microb Cell Fact. 2017;16(1):55. doi:10.1186/s12934-017-0669-x.
  • Zhang N, Li C, Niu Z, Kang H, Wang M, Zhang B, Tian H. Colonization and Immunoregulation of Lactobacillus Plantarum BF_15, a novel probiotic strain from the feces of breast-fed infants. Food Funct. 2020;11(4):3156–3166. doi:10.1039/C9FO02745A.
  • “ID 1007563 - BioProject - NCBI. n.d [Accessed 2023 Aug 23]. https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA1007563.
  • “ID 1007568 - BioProject - NCBI. n.d [Accessed 2023 Aug 23]. https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA1007568.