2,012
Views
38
CrossRef citations to date
0
Altmetric
Research Paper

The impact of tropomyosins on actin filament assembly is isoform specific

, , , , , , & show all
Pages 61-75 | Received 16 Feb 2016, Accepted 10 Jun 2016, Published online: 15 Jul 2016

REFERENCES

  • Schoenenberger CA, Mannherz HG, Jockusch BM. Actin: from structural plasticity to functional diversity. Eur J Cell Biol 2011; 90:797-804; PMID:21820202; http://dx.doi.org/10.1016/j.ejcb.2011.05.002
  • Gunning PW, Hardeman EC, Lappalainen P, Mulvihill DP. Tropomyosin - master regulator of actin filament function in the cytoskeleton. J Cell Sci 2015; 128:2965-74; PMID:26240174; http://dx.doi.org/10.1242/jcs.172502
  • Lees-Miller JP, Helfman DM. The molecular basis for tropomyosin isoform diversity. Bioessays 1991; 13:429-37; PMID:1796905; http://dx.doi.org/10.1002/bies.950130902
  • Lin JJ, Eppinga RD, Warren KS, McCrae KR. Human tropomyosin isoforms in the regulation of cytoskeleton functions. Adv Exp Med Biol 2008; 644:201-22; PMID:19209824; http://dx.doi.org/10.1007/978-0-387-85766-4_16
  • Heald RW, Hitchcock-DeGregori SE. The structure of the amino terminus of tropomyosin is critical for binding to actin in the absence and presence of troponin. J Biol Chem 1988; 263:5254-9; PMID:2965699
  • Moraczewska J, Nicholson-Flynn K, Hitchcock-DeGregori SE. The ends of tropomyosin are major determinants of actin affinity and myosin subfragment 1-induced binding to F-actin in the open state. Biochemistry 1999; 38:15885-92; PMID:10625454; http://dx.doi.org/10.1021/bi991816j
  • Gunning PW, Schevzov G, Kee AJ, Hardeman EC. Tropomyosin isoforms: divining rods for actin cytoskeleton function. Trends Cell Biol 2005; 15:333-41; PMID:15953552; http://dx.doi.org/10.1016/j.tcb.2005.04.007
  • Martin C, Schevzov G, Gunning P. Alternatively spliced N-terminal exons in tropomyosin isoforms do not act as autonomous targeting signals. J Struct Biol 2010; 170:286-93; PMID:20026406; http://dx.doi.org/10.1016/j.jsb.2009.12.016
  • Brown JH, Cohen C. Regulation of muscle contraction by tropomyosin and troponin: how structure illuminates function. Adv Protein Chem 2005; 71:121-59; PMID:16230111; http://dx.doi.org/10.1016/S0065-3233(04)71004-9
  • Tojkander S, Gateva G, Schevzov G, Hotulainen P, Naumanen P, Martin C, Gunning PW, Lappalainen P. A molecular pathway for myosin II recruitment to stress fibers. Curr Biol 2011; 21:539-50; PMID:21458264; http://dx.doi.org/10.1016/j.cub.2011.03.007
  • Stehn JR, Haass NK, Bonello T, Desouza M, Kottyan G, Treutlein H, et al. A novel class of anticancer compounds targets the actin cytoskeleton in tumor cells. Cancer Res 2013; 73:5169-82; PMID:23946473; http://dx.doi.org/10.1158/0008-5472.CAN-12-4501
  • Dalby-Payne JR, O'Loughlin EV, Gunning P. Polarization of specific tropomyosin isoforms in gastrointestinal epithelial cells and their impact on CFTR at the apical surface. Mol Biol Cell 2003; 14:4365-75; PMID:12960432; http://dx.doi.org/10.1091/mbc.E03-03-0169
  • Bryce NS, Schevzov G, Ferguson V, Percival JM, Lin JJ, Matsumura F, et al. Specification of actin filament function and molecular composition by tropomyosin isoforms. Mol Biol Cell 2003; 14:1002-16; PMID:12631719; http://dx.doi.org/10.1091/mbc.E02-04-0244
  • Curthoys NM, Freittag H, Connor A, Desouza M, Brettle M, Poljak A, et al. Tropomyosins induce neuritogenesis and determine neurite branching patterns in B35 neuroblastoma cells. Mol Cell Neurosci 2014; 58:11-21; PMID:24211701; http://dx.doi.org/10.1016/j.mcn.2013.10.011
  • Wolfenson H, Meacci G, Liu S, Stachowiak MR, Iskratsch T, Ghassemi S, et al. Tropomyosin controls sarcomere-like contractions for rigidity sensing and suppressing growth on soft matrices. Nat Cell Biol 2016; 18:33-42; PMID:26619148; http://dx.doi.org/10.1038/ncb3277
  • Raval GN, Bharadwaj S, Levine EA, Willingham MC, Geary RL, Kute T, et al. Loss of expression of tropomyosin-1, a novel class II tumor suppressor that induces anoikis, in primary breast tumors. Oncogene 2003; 22:6194-203; PMID:13679858; http://dx.doi.org/10.1038/sj.onc.1206719
  • Sanders C, Burtnick LD, Smillie LB. Native chicken gizzard tropomyosin is predominantly a β gamma-heterodimer. J Biol Chem 1986; 261:12774-8; PMID:3745212
  • Maytum R, Geeves MA, Konrad M. Actomyosin regulatory properties of yeast tropomyosin are dependent upon N-terminal modification. Biochemistry 2000; 39:11913-20; PMID:11009604; http://dx.doi.org/10.1021/bi000977g
  • Meshcheryakov V, Nitanai Y, Maytum R, Geeves MA, Maeda Y. Crystallization and preliminary X-ray crystallographic analysis of full-length yeast tropomyosin 2 from Saccharomyces cerevisiae. Acta Crystallogr Sect F Struct Biol Cryst Commun 2008; 64:528-30; PMID:18540067; http://dx.doi.org/10.1107/S1744309108013110
  • Sumida JP, Wu E, Lehrer SS. Conserved Asp-137 imparts flexibility to tropomyosin and affects function. J Biol Chem 2008; 283:6728-34; PMID:18165684; http://dx.doi.org/10.1074/jbc.M707485200
  • Gunning P, O'Neill G, Hardeman E. Tropomyosin-based regulation of the actin cytoskeleton in time and space. Physiol Rev 2008; 88:1-35; PMID:18195081; http://dx.doi.org/10.1152/physrev.00001.2007
  • Boussouf SE, Maytum R, Jaquet K, Geeves MA. Role of tropomyosin isoforms in the calcium sensitivity of striated muscle thin filaments. J Muscle Res Cell Motil 2007; 28:49-58; PMID:17436057; http://dx.doi.org/10.1007/s10974-007-9103-z
  • Janco M, Kalyva A, Scellini B, Piroddi N, Tesi C, Poggesi C, et al. α-Tropomyosin with a D175N or E180G mutation in only one chain differs from tropomyosin with mutations in both chains. Biochemistry 2012; 51:9880-90; PMID:23170982; http://dx.doi.org/10.1021/bi301323n
  • Monteiro PB, Lataro RC, Ferro JA, Reinach FC. Functional α-tropomyosin produced in Escherichia coli. A dipeptide extension can substitute the amino-terminal acetyl group. J Biol Chem 1994; 269:10461-6; PMID:8144630
  • Coulton A, Lehrer SS, Geeves MA. Functional homodimers and heterodimers of recombinant smooth muscle tropomyosin. Biochemistry 2006; 45:12853-8; PMID:17042503; http://dx.doi.org/10.1021/bi0613224
  • Urbancikova M, Hitchcock-DeGregori SE. Requirement of amino-terminal modification for striated muscle α-tropomyosin function. J Biol Chem 1994; 269:24310-5; PMID:7929088
  • Kis-Bicskei N, Vig A, Nyitrai M, Bugyi B, Talian GC. Purification of tropomyosin Br-3 and 5NM1 and characterization of their interactions with actin. Cytoskeleton (Hoboken) 2013; 70:755-65; PMID:24124168; http://dx.doi.org/10.1002/cm.21143
  • Gunning PW, Ghoshdastider U, Whitaker S, Popp D, Robinson RC. The evolution of compositionally and functionally distinct actin filaments. J Cell Sci 2015; 128:2009-19; PMID:25788699; http://dx.doi.org/10.1242/jcs.165563
  • Robaszkiewicz K, Ostrowska Z, Marchlewicz K, Moraczewska J. Tropomyosin isoforms differentially modulate the regulation of actin filament polymerization and depolymerization by cofilins. FEBS J 2015; 283(4):723-737; PMID:26663234.
  • Wawro B, Greenfield NJ, Wear MA, Cooper JA, Higgs HN, Hitchcock-DeGregori SE. Tropomyosin regulates elongation by formin at the fast-growing end of the actin filament. Biochemistry 2007; 46:8146-55; PMID:17569543; http://dx.doi.org/10.1021/bi700686p
  • Bonello TT, Janco M, Hook J, Byun A, Appaduray M, Dedova I, et al. A small molecule inhibitor of tropomyosin dissociates actin binding from tropomyosin-directed regulation of actin dynamics. Sci Rep 2016; 6:19816; PMID:26804624; http://dx.doi.org/10.1038/srep19816
  • Pittenger MF, Kistler A, Helfman DM. Alternatively spliced exons of the β tropomyosin gene exhibit different affinities for F-actin and effects with nonmuscle caldesmon. J Cell Sci 1995; 108(Pt 10):3253-65; PMID:7593286
  • Barua B, Fagnant PM, Winkelmann DA, Trybus KM, Hitchcock-DeGregori SE. A periodic pattern of evolutionarily conserved basic and acidic residues constitutes the binding interface of actin-tropomyosin. J Biol Chem 2013; 288:9602-9; PMID:23420843; http://dx.doi.org/10.1074/jbc.M113.451161
  • Novy RE, Sellers JR, Liu LF, Lin JJ. In vitro functional characterization of bacterially expressed human fibroblast tropomyosin isoforms and their chimeric mutants. Cell Motil Cytoskeleton 1993; 26:248-61; PMID:8293480; http://dx.doi.org/10.1002/cm.970260308
  • Skorzewski R, Sliwinska M, Borys D, Sobieszek A, Moraczewska J. Effect of actin C-terminal modification on tropomyosin isoforms binding and thin filament regulation. Biochim Biophys Acta 2009; 1794:237-43; PMID:19041430; http://dx.doi.org/10.1016/j.bbapap.2008.10.014
  • Tobacman LS. Cooperative binding of tropomyosin to actin. Adv Exp Med Biol 2008; 644:85-94; PMID:19209815; http://dx.doi.org/10.1007/978-0-387-85766-4_7
  • Hitchcock-DeGregori SE, Sampath P, Pollard TD. Tropomyosin inhibits the rate of actin polymerization by stabilizing actin filaments. Biochemistry 1988; 27:9182-5; PMID:3242622; http://dx.doi.org/10.1021/bi00426a016
  • Wegner A, Ruhnau K. Rate of binding of tropomyosin to actin filaments. Biochemistry 1988; 27:6994-7000; PMID:3196697; http://dx.doi.org/10.1021/bi00418a049
  • Johnson M, East DA, Mulvihill DP. Formins determine the functional properties of actin filaments in yeast. Curr Biol 2014; 24:1525-30; PMID:24954052; http://dx.doi.org/10.1016/j.cub.2014.05.034
  • Hsiao JY, Goins LM, Petek NA, Mullins RD. Arp2/3 Complex and Cofilin Modulate Binding of Tropomyosin to Branched Actin Networks. Curr Biol 2015; 25:1573-82; PMID:26028436; http://dx.doi.org/10.1016/j.cub.2015.04.038\
  • Jansen S, Collins A, Chin SM, Ydenberg CA, Gelles J, Goode BL. Single-molecule imaging of a three-component ordered actin disassembly mechanism. Nat Commun 2015; 6:7202; PMID:25995115; http://dx.doi.org/10.1038/ncomms8202
  • Spudich JA, Watt S. The regulation of rabbit skeletal muscle contraction. I. Biochemical studies of the interaction of the tropomyosin-troponin complex with actin and the proteolytic fragments of myosin. J Biol Chem 1971; 246:4866-71; PMID:4254541
  • Kouyama T, Mihashi K. Fluorimetry study of N-(1-pyrenyl)iodoacetamide-labelled F-actin. Local structural change of actin protomer both on polymerization and on binding of heavy meromyosin. Eur J Biochem 1981; 114:33-8; PMID:7011802; http://dx.doi.org/10.1111/j.1432-1033.1981.tb06167.x
  • Schevzov G, Whittaker SP, Fath T, Lin JJ, Gunning PW. Tropomyosin isoforms and reagents. Bioarchitecture 2011; 1:135-64; PMID:22069507; http://dx.doi.org/10.4161/bioa.1.4.17897
  • Lagarias JC, Reeds JA, Wright MH, Wright PE. Convergence properties of the Nelder-Mead simplex method in low dimensions. Siam J Optimiz 1998; 9:112-47; http://dx.doi.org/10.1137/S1052623496303470

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.