1,559
Views
11
CrossRef citations to date
0
Altmetric
EXTRA VIEW

Insights into the Initiation of Eukaryotic DNA Replication

, , &
Pages 449-454 | Received 05 Oct 2015, Accepted 28 Oct 2015, Published online: 14 Jan 2016

References

  • Bell SP, Dutta A. DNA replication in eukaryotic cells. Annu Rev Biochem 2002; 71:333-74; PMID:12045100; http://dx.doi.org/10.1146/annurev.biochem.71.110601.135425
  • Green B, Finn K, Li J. Loss of DNA replication control is a potent inducer of gene amplification. Science 2010; 329:943-46; PMID:20724634; http://dx.doi.org/10.1126/science.1190966
  • Georgescu R, Schauer G, Yao N, Langston L, Yurieva O, Zhang D, Finkelstein J, O'Donnell, M. Reconstitution of a eukaryotic replisome reveals suppression mechanisms that define leading/lagging strand operation. Elife 2015; 4:e04988; PMID:25871847; http://dx.doi.org/10.7554/eLife.04988
  • Pursell Z, Isoz I, Lundström E, Johansson E, Kunkel T. Yeast DNA polymerase epsilon participates in leading-strand DNA replication. Science 2007; 317:127-30; PMID:17615360; http://dx.doi.org/10.1126/science.1144067
  • Johnson R, Klassen R, Prakash L, Prakash S. A Major Role of DNA Polymerase δ in Replication of Both the Leading and Lagging DNA Strands. Mol Cell 2015; 59:163-75; PMID:26145172; http://dx.doi.org/10.1016/j.molcel.2015.05.038
  • Tognetti S, Riera A, Speck C. Switch on the engine: how the eukaryotic replicative helicase MCM2-7 becomes activated. Chromosoma 2015; 124:13-26; PMID:25308420; http://dx.doi.org/10.1007/s00412-014-0489-2
  • Ilves I, Petojevic T, Pesavento J, Botchan M. Activation of the MCM2-7 Helicase by Association with Cdc45 and GINS Proteins. Mol Cell 2010; 37:247-58; PMID:20122406; http://dx.doi.org/10.1016/j.molcel.2009.12.030
  • Bochman M, Schwacha A. The Mcm2-7 complex has in vitro helicase activity. Mol Cell 2008; 31:287-93; PMID:18657510; http://dx.doi.org/10.1016/j.molcel.2008.05.020
  • Fletcher R, Shen J, Gomez-Llorente Y, Martin CS, Carazo JM, Chen X. Double hexamer disruption and biochemical activities of Methanobacterium thermoautotrophicum MCM. J Biol Chem 2005; 280:42405-10; PMID:16221679; http://dx.doi.org/10.1074/jbc.M509773200
  • Remus D, Beuron F, Tolun G, Griffith J, Morris E, Diffley J. Concerted loading of Mcm2-7 double hexamers around DNA during DNA replication origin licensing. Cell 2009; 139:719-730; PMID:19896182; http://dx.doi.org/10.1016/j.cell.2009.10.015
  • Evrin C, Clarke P, Zech J, Lurz R, Sun J, Uhle S, Li H, Stillman B, Speck C. A double-hexameric MCM2-7 complex is loaded onto origin DNA during licensing of eukaryotic DNA replication. Proc Natl Acad Sci U S A 2009; 106:20240-20245; PMID:19910535; http://dx.doi.org/10.1073/pnas.0911500106
  • Ticau S, Friedman L, Ivica N, Gelles J, Bell S. Single-molecule studies of origin licensing reveal mechanisms ensuring bidirectional helicase loading. Cell 2015; 161:513-525; PMID:25892223; http://dx.doi.org/10.1016/j.cell.2015.03.012
  • Frigola J, Remus D, Mehanna A, Diffley J. ATPase-dependent quality control of DNA replication origin licensing. Nature 2013; 495:339-343; PMID:23474987; http://dx.doi.org/10.1038/nature11920
  • Fernández-Cid A, Riera A, Tognetti S, Herrera M, Samel S, Evrin C, Winkler C, Gardenal E, Uhle S, Speck C. An ORC/Cdc6/MCM2-7 Complex Is Formed in a Multistep Reaction to Serve as a Platform for MCM Double-Hexamer Assembly. Mol Cell 2013; 50:577-588; http://dx.doi.org/10.1016/j.molcel.2013.03.026
  • Diffley J. The many faces of redundancy in DNA replication control. Cold Spring Harb Symp Quant Biol 2010; 75:135-142; PMID:21502406; http://dx.doi.org/10.1101/sqb.2010.75.062
  • Ge X, Jackson D, Blow J. Dormant origins licensed by excess Mcm2-7 are required for human cells to survive replicative stress. Genes Dev 2007; 21:3331-3341; PMID:18079179; http://dx.doi.org/10.1101/gad.457807
  • Kawabata T, Luebben S, Yamaguchi S, Ilves I, Matise I, Buske T, Botchan M, Shima N. Stalled fork rescue via dormant replication origins in unchallenged S phase promotes proper chromosome segregation and tumor suppression. Mol Cell 2011; 41:543-553; PMID:21362550; http://dx.doi.org/10.1016/j.molcel.2011.02.006
  • Moyer S, Lewis P, Botchan M. Isolation of the Cdc45/Mcm2-7/GINS (CMG) complex, a candidate for the eukaryotic DNA replication fork helicase. Proc Natl Acad Sci U S A 2006; 103:10236-10241; PMID:16798881; http://dx.doi.org/10.1073/pnas.0602400103
  • Gambus A, Jones RC, Sanchez-Diaz A, Kanemaki M, Deursen FV, Edmondson RD, Labib K. GINS maintains association of Cdc45 with MCM in replisome progression complexes at eukaryotic DNA replication forks. Nat Cell Biol 2006; 8:358-366; PMID:16531994; http://dx.doi.org/10.1038/ncb1382
  • Pacek M, Tutter A, Kubota Y, Takisawa H, Walter J. Localization of MCM2-7, Cdc45, and GINS to the site of DNA unwinding during eukaryotic DNA replication. Mol Cell 2006; 21:581-587; PMID:16483939; http://dx.doi.org/10.1016/j.molcel.2006.01.030
  • Costa A, Renault L, Swuec P, Petojevic T, Pesavento J, Ilves I, MacLellan-Gibson K, Fleck R, Botchan M, Berger J. DNA binding polarity, dimerization, and ATPase ring remodeling in the CMG helicase of the eukaryotic replisome. Elife 2014; 3 Aug 12:e03273
  • Kanemaki M, Labib K. Distinct roles for Sld3 and GINS during establishment and progression of eukaryotic DNA replication forks. EMBO J 2006; 25:1753-1763; PMID:16601689; http://dx.doi.org/10.1038/sj.emboj.7601063
  • Zegerman P, Diffley JF. Phosphorylation of Sld2 and Sld3 by cyclin-dependent kinases promotes DNA replication in budding yeast. Nature 2007; 445:281-285; PMID:17167417; http://dx.doi.org/10.1038/nature05432
  • Tanaka S, Umemori T, Hirai K, Muramatsu S, Kamimura Y, Araki H. CDK-dependent phosphorylation of Sld2 and Sld3 initiates DNA replication in budding yeast. Nature 2007; 445:328-332; PMID:17167415; http://dx.doi.org/10.1038/nature05465
  • Kumagai A, Shevchenko A, Shevchenko A, Dunphy W. Treslin collaborates with TopBP1 in triggering the initiation of DNA replication. Cell 2010; 140:349-359; PMID:20116089; http://dx.doi.org/10.1016/j.cell.2009.12.049
  • Kumagai A, Shevchenko A, Shevchenko A, Dunphy W. Direct regulation of Treslin by cyclin-dependent kinase is essential for the onset of DNA replication. J Cell Biol 2011; 193:995-1007; PMID:21646402; http://dx.doi.org/10.1083/jcb.201102003
  • Matsuno K, Kumano M, Kubota Y, Hashimoto Y, Takisawa H. The N-terminal noncatalytic region of Xenopus RecQ4 is required for chromatin binding of DNA polymerase α in the initiation of DNA replication. Mol Cell Biol 2006; 26:4843-4852; PMID:16782873; http://dx.doi.org/10.1128/MCB.02267-05
  • Boos D, Sanchez-Pulido L, Rappas M, Pearl L, Oliver A, Ponting C, Diffley J. Regulation of DNA Replication through Sld3-Dpb11 Interaction Is Conserved from Yeast to Humans. Curr Biol 2011; 21:1152-1157; PMID:21700459; http://dx.doi.org/10.1016/j.cub.2011.05.057
  • Itou H, Shirakihara Y, Araki H. The quaternary structure of the eukaryotic DNA replication proteins Sld7 and Sld3. Acta Crystallogr D Biol Crystallogr 2015; 71:1649-1656; PMID:26249346; http://dx.doi.org/10.1107/S1399004715010457
  • Mantiero D, Mackenzie A, Donaldson A, Zegerman P. Limiting replication initiation factors execute the temporal programme of origin firing in budding yeast. EMBO J 2011; 30:4805-4814; PMID:22081107; http://dx.doi.org/10.1038/emboj.2011.404
  • Zegerman P, Diffley JFX. DNA replication as a target of the DNA damage checkpoint. DNA Repair (Amst) 2009; 8:1077-1088; PMID:19505853; http://dx.doi.org/10.1016/j.dnarep.2009.04.023
  • Yeeles J, Deegan T, Janska A, Early A, Diffley J. Regulated eukaryotic DNA replication origin firing with purified proteins. Nature 2015; 519:431-435; PMID:25739503; http://dx.doi.org/10.1038/nature14285
  • Labib K. How do Cdc7 and cyclin-dependent kinases trigger the initiation of chromosome replication in eukaryotic cells?s Genes Dev 2010; 24:1208-1219; PMID:20551170; http://dx.doi.org/10.1101/gad.1933010
  • Randell J, Fan A, Chan C, Francis L, Heller R, Galani K, Bell S. Mec1 is one of multiple kinases that prime the Mcm2-7 helicase for phosphorylation by Cdc7. Mol Cell 2010; 40:353-363; PMID:21070963; http://dx.doi.org/10.1016/j.molcel.2010.10.017
  • Masai H, Taniyama C, Ogino K, Matsui E, Kakusho N, Matsumoto S, Kim J, Ishii A, Tanaka T, Kobayashi T, et al. Phosphorylation of MCM4 by Cdc7 kinase facilitates its interaction with Cdc45 on the chromatin. J Biol Chem 2006; 281:39249-39261; PMID:17046832; http://dx.doi.org/10.1074/jbc.M608935200
  • Sheu YJ, Stillman B. Cdc7-Dbf4 phosphorylates MCM proteins via a docing site-mediated mechanism to promote S phase progression. Mol Cell 2006; 24:101-113; PMID:17018296; http://dx.doi.org/10.1016/j.molcel.2006.07.033
  • Sheu Y, Kinney J, Lengronne A, Pasero P, Stillman B. Domain within the helicase subunit Mcm4 integrates multiple kinase signals to control DNA replication initiation and fork progression. Proc Natl Acad Sci U S A 2014; 111:E1899-1908; PMID:24740181; http://dx.doi.org/10.1073/pnas.1404063111
  • Sheu Y, Stillman B. The Dbf4-Cdc7 kinase promotes S phase by alleviating an inhibitory activity in Mcm4. Nature 2010; 463:113-117; PMID:20054399; http://dx.doi.org/10.1038/nature08647
  • Lei M, Kawasaki Y, Young M, Kihara M, Sugino A, Tye B. MCM2 is a target of regulation by Cdc7-Dbf4 during the initiation of DNA synthesis. Genes Dev 1997; 11:3365-3374; PMID:9407029; http://dx.doi.org/10.1101/gad.11.24.3365
  • Bruck I, Kaplan D. Dbf4-Cdc7 phosphorylation of Mcm2 is required for cell growth. J Biol Chem 2009; 284:28823-28831; PMID:19692334; http://dx.doi.org/10.1074/jbc.M109.039123
  • Stead B, Brandl C, Davey M. Phosphorylation of Mcm2 modulates Mcm2-7 activity and affects the cell's response to DNA damage. Nucleic Acids Res 2011; 39:6998-7008; PMID:21596784; http://dx.doi.org/10.1093/nar/gkr371
  • Bruck I, Kaplan DL. The Dbf4-Cdc7 kinase promotes Mcm2-7 ring opening to allow for single-stranded DNA extrusion and helicase assembly. J Biol Chem 2015; 290:1210-1221; PMID:25471369; http://dx.doi.org/10.1074/jbc.M114.608232
  • Bruck I, Kaplan D. Conserved mechanism for coordinating replication fork helicase assembly with phosphorylation of the helicase. Proc Natl Acad Sci U S A 2015; 112:11223-11228; PMID:26305950; http://dx.doi.org/10.1073/pnas.1509608112
  • Samel S, Fernández-Cid A, Sun J, Riera A, Tognetti S, Herrera M, Li H, Speck C. A unique DNA entry gate serves for regulated loading of the eukaryotic replicative helicase MCM2-7 onto DNA. Genes Dev 2014; 28:1653-1666; PMID:25085418; http://dx.doi.org/10.1101/gad.242404.114
  • Hardy CFJ, Dryga O, Seematter S, Pahl PMB, Sclafani RA. mcm5/cdc46-bob1 bypasses the requirement for the S phase activatorCdc7p. Proc Natl Acad Sci U S A 1997; 94:3151-3155; PMID:9096361; http://dx.doi.org/10.1073/pnas.94.7.3151
  • Itou H, Muramatsu S, Shirakihara Y, Araki H. Crystal structure of the homology domain of the eukaryotic DNA replication proteins Sld3 Treslin Structure 2014; 22:1341-1347; PMID:25126958; http://dx.doi.org/10.1016/j.str.2014.07.001
  • Kamimura Y, Tak YS, Sugino A, Araki H. Sld3, which interacts with Cdc45 (Sld4), functions for chromosomal DNA replication in Saccharomyces cerevisiae. EMBO J 2001; 20:2097-2107; PMID:11296242; http://dx.doi.org/10.1093/emboj/20.8.2097
  • Dhingra N, Bruck I, Smith S, Ning B, Kaplan D. Dpb11 helps control assembly of the Cdc45-Mcm2-7-GINS replication fork helicase. J Biol Chem 2015; 290:7586-7601; PMID:25659432; http://dx.doi.org/10.1074/jbc.M115.640383
  • Bruck I, Kaplan D. The replication initiation protein sld2 regulates helicase assembly. J Biol Chem 2014; 289:1948-1959; PMID:24307213; http://dx.doi.org/10.1074/jbc.M113.532085
  • Bruck I, Kaplan DL. The replication initiation protein Sld3/Treslin orchestrates the assembly of the replication fork helicase during S phase. J Biol Chem 2015; 290(45):27414-24; PMID: 26405041; http://dx.doi.org/10.1074/jbc.M115.688424
  • Ohlenschläger O, Kuhnert A, Schneider A, Haumann S, Bellstedt P, Keller H, Saluz HP, Hortschansky P, Hänel F, Grosse F, et al. The N-terminus of the human RecQL4 helicase is a homeodomain-like DNA interaction motif. Nucleic Acids Res 2012; 40:8309-8324; http://dx.doi.org/10.1093/nar/gks591
  • Geraghty D, Ding M, Heintz N, Pederson D. Premature structural changes at replication origins in a yeast minichromosome maintenance (MCM) mutant. J Biol Chem 2000; 275:18011-18021; PMID:10751424; http://dx.doi.org/10.1074/jbc.M909787199
  • Fu Y, Yardimci H, Long D, Ho T, Guainazzi A, Bermudez V, Hurwitz J, van Oijen A, Schärer O, Walter J. Selective bypass of a lagging strand roadblock by the eukaryotic replicative DNA helicase. Cell 2011; 146:931-941; PMID:21925316; http://dx.doi.org/10.1016/j.cell.2011.07.045
  • Takahashi TS, Wigley DB, Walter JC. Pumps, paradoxes, and ploughshares: mechanism of the Mcm2-7 DNA helicase. Trends Biochem Sci 2005; 30:437-444; PMID:16002295; http://dx.doi.org/10.1016/j.tibs.2005.06.007
  • Gai D, Chang Y, Chen X. Origin DNA melting and unwinding in DNA replication. Curr Opin Struct Biol 2010; 20:756-762; PMID:20870402; http://dx.doi.org/10.1016/j.sbi.2010.08.009
  • Herrera, MC, Tognetti, S, Riera, A, Zech, J, Clarke P, Fernández-Cid A, Speck C. A reconstituted system reveals how activating and inhibitory interactions control DDK dependent assembly of the eukaryotic replicative helicase. Nucleic Acids Res 2015; 43(21):10238-10250; PMID: 26338774; http://dx.doi.org/10.1093/nar/gkv881
  • Solomon N, Wright M, Chang S, Buckley A, Dumas L, Gaber R. Genetic and molecular analysis of DNA43 and DNA52: two new cell-cycle genes in Saccharomyces cerevisiae. Yeast 1992; 8:273-289; PMID:1514326; http://dx.doi.org/10.1002/yea.320080405
  • Merchant A, Kawasaki Y, Chen Y, Lei M, Tye BK. A lesion in the DNA replication initiation factor Mcm10 induces pausing of elongation forks through chromosomal replication origins in S. cerevisiae. Mol Cell Biol 1997; 17:3261-3271; PMID:9154825; http://dx.doi.org/10.1128/MCB.17.6.3261
  • Thu Y, Bielinsky A. Enigmatic rles of Mcm10 in DNA replication. Trends Biochem Sci 2013; 38:184-194; PMID:23332289; http://dx.doi.org/10.1016/j.tibs.2012.12.003
  • Wohlschlegel J, Dhar S, Prokhorova T, Dutta, A, Walter J. Xenopus Mcm10 binds to origins of DNA replication after Mcm2-7 and stimulates origin binding of Cdc45. Mol Cell 2002; 9:233-240; PMID:11864598; http://dx.doi.org/10.1016/S1097-2765(02)00456-2
  • Gregan J, Lindner K, Brimage L, Franklin R, Namdar M, Hart E, Aves S, Kearsey S. Fission yeast Cdc23/Mcm10 functions after pre-replicative complex formation to promote Cdc45 chromatin binding. Mol Biol Cell 2003; 14:3876-3887; PMID:12972571; http://dx.doi.org/10.1091/mbc.E03-02-0090
  • Sawyer S, Cheng I, Chai W, Tye B. Mcm10 and Cdc45 cooperate in origin activation in Saccharomyces cerevisiae. J Mol Biol 2004; 340:195-202; PMID:15201046; http://dx.doi.org/10.1016/j.jmb.2004.04.066
  • Im JS, Ki SH, Farina A, Jung DS, Hurwitz J, Leea JK. Assembly of the Cdc45-Mcm2-7-GINS complex in human cells requires the Ctf4/And-1, RecQL4, and Mcm10 proteins. Proc Natl Acad Sci U S A 2009; 106:15628-15632; PMID:19805216; http://dx.doi.org/10.1073/pnas.0908039106
  • Watase G, Takisawa H, Kanemaki M. Mcm10 plays a role in functioning of the eukaryotic replicative DNA helicase, Cdc45-Mcm-GINS. Curr Biol 2012; 22:343-349; PMID:22285032; http://dx.doi.org/10.1016/j.cub.2012.01.023
  • van Deursen F, Sengupta S, De Piccoli G, Sanchez-Diaz A, Labib K. Mcm10 associates with the loaded DNA helicase at replication origins and defines a novel step in its activation. EMBO J 2012; 31:2195-2206; PMID:22433841; http://dx.doi.org/10.1038/emboj.2012.69
  • Kanke M, Kodama Y, Takahashi T, Nakagawa T, Masukata H. Mcm10 plays an essential role in origin DNA unwinding after loading of the CMG components. EMBO J 2012; 31:2182-2194; PMID:22433840; http://dx.doi.org/10.1038/emboj.2012.68
  • Ricke R, Bielinsky A. A conserved Hsp10-like domain in Mcm10 is required to stabilize the catalytic subunit of DNA polymerase-α in budding yeast. J Biol Chem 2006; 281:18414-18425; PMID:16675460; http://dx.doi.org/10.1074/jbc.M513551200
  • Ricke RM, Bielinsky AK. Mcm10 regulates the stability and chromatin association of DNA polymerase-α. Mol Cell 2004; 16:173-185; PMID:15494305; http://dx.doi.org/10.1016/j.molcel.2004.09.017

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.