2,223
Views
15
CrossRef citations to date
0
Altmetric
Extra Views

Genetic control of nucleolar size: An evolutionary perspective

, , , , , & show all
Pages 112-120 | Received 29 Feb 2016, Accepted 11 Mar 2016, Published online: 29 Apr 2016

References

  • Lo SJ, Lee CC, Lai HJ. The nucleolus: reviewing oldies to have new understandings. Cell Res 2006; 16:530-8; PMID:16775624; http://dx.doi.org/10.1038/sj.cr.7310070
  • Brown DD, Gurdon JB. Absence of ribosomal RNA synthesis in the anucleolate mutant of Xenopus laevis. Proc Natl Acad Sci U S A 1964; 51:139-46; PMID:14106673; http://dx.doi.org/10.1073/pnas.51.1.139
  • Pederson T, Powell K. Thoru Pederson: Spotting novel roles for the nucleolus. J Cell Biol 2015; 208:384-5; PMID:25688131; http://dx.doi.org/10.1083/jcb.2084pi
  • Tsai RY, Pederson T. Connecting the nucleolus to the cell cycle and human disease. FASEB J 2014; 28:3290-6; PMID:24790035; http://dx.doi.org/10.1096/fj.14-254680
  • Pederson T. “Compact” nuclear domains: reconsidering the nucleolus. Nucleus 2010; 1:444-5; PMID:21326828; http://dx.doi.org/10.4161/nucl.1.5.13056
  • Rawlinson SM, Moseley GW. The nucleolar interface of RNA viruses. Cell Microbiol 2015; 17:1108-20; PMID:26041433; http://dx.doi.org/10.1111/cmi.12465
  • Audas TE, Jacob MD, Lee S. Immobilization of proteins in the nucleolus by ribosomal intergenic spacer noncoding RNA. Mol Cell 2012; 45:147-57; PMID:22284675; http://dx.doi.org/10.1016/j.molcel.2011.12.012
  • Politz JC, Hogan EM, Pederson T. MicroRNAs with a nucleolar location. RNA 2009; 15:1705-15; PMID:19628621; http://dx.doi.org/10.1261/rna.1470409
  • Bai B, Liu H, Laiho M. Small RNA expression and deep sequencing analyses of the nucleolus reveal the presence of nucleolus-associated microRNAs. FEBS Open Bio 2014; 4:441-49; PMID:24918059; http://dx.doi.org/10.1016/j.fob.2014.04.010
  • Reyes-Gutierrez P, Ritland Politz JC, Pederson T. A mRNA and cognate microRNAs localize in the nucleolus. Nucleus 2014; 5:636-42; PMID:25485975; http://dx.doi.org/10.4161/19491034.2014.990864
  • Boisvert FM, van Koningsbruggen S, Navascues J, Lamond AI. The multifunctional nucleolus. Nat Rev Mol Cell Biol 2007; 8:574-85; PMID:17519961; http://dx.doi.org/10.1038/nrm2184
  • Lam YW, Evans VC, Heesom KJ, Lamond AI, Matthews DA. Proteomics analysis of the nucleolus in adenovirus-infected cells. Mol Cell Proteomics 2010; 9:117-30; PMID:19812395; http://dx.doi.org/10.1074/mcp.M900338-MCP200
  • Hernandez-Verdun D. Assembly and disassembly of the nucleolus during the cell cycle. Nucleus 2011; 2:189-94; PMID:21818412; http://dx.doi.org/10.4161/nucl.2.3.16246
  • Miller L, Gurdon JB. Mutations affecting the size of the nucleolus in Xenopus laevis. Nature 1970; 227:1108-10; PMID:5451103; http://dx.doi.org/10.1038/2271108a0
  • Bailey RP, Vrooman MJ, Sawai Y, Tsukada K, Short J, Lieberman I. Amino acids and control of nucleolar size, the activity of RNA polymerase I, and DNA synthesis in liver. Proc Natl Acad Sci USA 1976; 73:3201-5; PMID:1067612; http://dx.doi.org/10.1073/pnas.73.9.3201
  • Derenzini M, Montanaro L, Trere D. What the nucleolus says to a tumour pathologist. Histopathology 2009; 54:753-62; PMID:19178588; http://dx.doi.org/10.1111/j.1365-2559.2008.03168.x
  • Jorgensen P, Edgington NP, Schneider BL, Rupes I, Tyers M, Futcher B. The size of the nucleus increases as yeast cells grow. Mol Biol Cell 2007; 18:3523-32; PMID:17596521; http://dx.doi.org/10.1091/mbc.E06-10-0973
  • Neumann FR, Nurse P. Nuclear size control in fission yeast. J Cell Biol 2007; 179:593-600; PMID:17998401; http://dx.doi.org/10.1083/jcb.200708054
  • Berciano MT, Novell M, Villagra NT, Casafont I, Bengoechea R, Val-Bernal JF, Lafarga M. Cajal body number and nucleolar size correlate with the cell body mass in human sensory ganglia neurons. J Structural Biol 2007; 158:410-20; http://dx.doi.org/10.1016/j.jsb.2006.12.008
  • Chan YH, Marshall WF. Scaling properties of cell and organelle size. Organogenesis 2010; 6:88-96; PMID:20885855; http://dx.doi.org/10.4161/org.6.2.11464
  • Chan YH, Marshall WF. How cells know the size of their organelles. Science 2012; 337:1186-9; PMID:22955827; http://dx.doi.org/10.1126/science.1223539
  • Rodriguez-Corona U, Sobol M, Rodriguez-Zapata LC, Hozak P, Castano E. Fibrillarin from Archaea to human. Biol Cell / Under Auspices European Cell Biol Organization 2015; 107:159-74; http://dx.doi.org/10.1111/boc.201400077
  • Yi YH, Ma TH, Lee LW, Chiou PT, Chen PH, Lee CM, Chu YD, Yu H, Hsiung KC, Tsai YT, et al. A Genetic Cascade of let-7-ncl-1-fib-1 Modulates Nucleolar Size and rRNA Pool in Caenorhabditis elegans. PLoS Genetics 2015; 11:e1005580; PMID:26492166; http://dx.doi.org/10.1371/journal.pgen.1005580
  • Brangwynne CP. Phase transitions and size scaling of membrane-less organelles. J Cell Biol 2013; 203:875-81; PMID:24368804; http://dx.doi.org/10.1083/jcb.201308087
  • Weber SC, Brangwynne CP. Inverse size scaling of the nucleolus by a concentration-dependent phase transition. Curr Biol 2015; 25:641-6; PMID:25702583; http://dx.doi.org/10.1016/j.cub.2015.01.012
  • Berry J, Weber SC, Vaidya N, Haataja M, Brangwynne CP. RNA transcription modulates phase transition-driven nuclear body assembly. Proc Natl Acad Sci U S A 2015; 112:E5237-5245; PMID:26351690; http://dx.doi.org/10.1073/pnas.1509317112
  • Tessarz P, Santos-Rosa H, Robson SC, Sylvestersen KB, Nelson CJ, Nielsen ML, Kouzarides T. Glutamine methylation in histone H2A is an RNA-polymerase-I-dedicated modification. Nature 2014; 505:564-8; PMID:24352239; http://dx.doi.org/10.1038/nature12819
  • Zhu L, Brangwynne CP. Nuclear bodies: the emerging biophysics of nucleoplasmic phases. Curr Opin Cell Biol 2015; 34:23-30; PMID:25942753; http://dx.doi.org/10.1016/j.ceb.2015.04.003
  • Nott TJ, Petsalaki E, Farber P, Jervis D, Fussner E, Plochowietz A, Craggs TD, Bazett-Jones DP, Pawson T, Forman-Kay JD, et al. Phase transition of a disordered nuage protein generates environmentally responsive membraneless organelles. Mol Cell 2015; 57:936-47; PMID:25747659; http://dx.doi.org/10.1016/j.molcel.2015.01.013
  • Lee CC, Tsai YT, Kao CW, Lee LW, Lai HJ, Ma TH, Chang YS, Yeh NH, Lo SJ, et al. Mutation of a Nopp140 gene dao-5 alters rDNA transcription and increases germ cell apoptosis in C. elegans. Cell Death Dis 2014; 5:e1158; PMID:24722283; http://dx.doi.org/10.1038/cddis.2014.114
  • Alves C, Cheng H, Roder H, Taylor J. Intrinsic disorder and oligomerization of the hepatitis delta virus antigen. Virology 2010; 407:333-40; PMID:20855099; http://dx.doi.org/10.1016/j.virol.2010.08.019
  • Lee LW, Lee CC, Huang CR, Lo SJ. The nucleolus of Caenorhabditis elegans. J Biomed Biotech 2012; 2012:601274
  • Neumuller RA, Gross T, Samsonova AA, Vinayagam A, Buckner M, Founk K, Hu Y, Sharifpoor S, Rosebrock AP, Andrews B, et al. Conserved regulators of nucleolar size revealed by global phenotypic analyses. Sci Signal 2013; 6:ra70; PMID:23962978; http://dx.doi.org/10.1126/scisignal.2004145
  • Sulston JE, Schierenberg E, White JG, Thomson JN. The embryonic cell lineage of the nematode Caenorhabditis elegans. Dev Biol 1983; 100:64-119; PMID:6684600; http://dx.doi.org/10.1016/0012-1606(83)90201-4
  • Frank DJ, Roth MB. ncl-1 is required for the regulation of cell size and ribosomal RNA synthesis in Caenorhabditis elegans. J Cell Biol 1998; 140:1321-9; PMID:9508766; http://dx.doi.org/10.1083/jcb.140.6.1321
  • Lai MC, Sun HS, Wang SW, Tarn WY. DDX3 functions in antiviral innate immunity through translational control of PACT. FEBS J 2016; 283:88-101; PMID:26454002; http://dx.doi.org/10.1111/febs.13553
  • Slack FJ, Basson M, Liu Z, Ambros V, Horvitz HR, Ruvkun G. The lin-41 RBCC gene acts in the C. elegans heterochronic pathway between the let-7 regulatory RNA and the LIN-29 transcription factor. Mol Cell 2000; 5:659-69; PMID:10882102; http://dx.doi.org/10.1016/S1097-2765(00)80245-2
  • Slack FJ, Ruvkun G. A novel repeat domain that is often associated with RING finger and B-box motifs. Trends Biochem Sci 1998; 23:474-5; PMID:9868369; http://dx.doi.org/10.1016/S0968-0004(98)01299-7
  • Reymond A, Meroni G, Fantozzi A, Merla G, Cairo S, Luzi L, Riganelli D, Zanaria E, Messali S, Cainarca S, et al. The tripartite motif family identifies cell compartments. EMBO J 2001; 20:2140-51; PMID:11331580; http://dx.doi.org/10.1093/emboj/20.9.2140
  • Loedige I, Stotz M, Qamar S, Kramer K, Hennig J, Schubert T, Löffler P, Längst G, Merkl R, Urlaub H, et al. The NHL domain of BRAT is an RNA-binding domain that directly contacts the hunchback mRNA for regulation. Genes Dev 2014; 28:749-64; PMID:24696456; http://dx.doi.org/10.1101/gad.236513.113
  • Loedige I, Jakob L, Treiber T, Ray D, Stotz M, Treiber N, Hennig J, Cook KB, Morris Q, Hughes TR, et al. The Crystal Structure of the NHL Domain in Complex with RNA Reveals the Molecular Basis of Drosophila Brain-Tumor-Mediated Gene Regulation. Cell Reports 2015; 13:1206-20; PMID:26527002; http://dx.doi.org/10.1016/j.celrep.2015.09.068
  • Laver JD, Li X, Ray D, Cook KB, Hahn NA, Nabeel-Shah S, Kekis M, Luo H, Marsolais AJ, Fung KY, et al. Brain tumor is a sequence-specific RNA-binding protein that directs maternal mRNA clearance during the Drosophila maternal-to-zygotic transition. Genome Biol 2015; 16:94; PMID:25962635; http://dx.doi.org/10.1186/s13059-015-0659-4
  • Vogt EJ, Meglicki M, Hartung KI, Borsuk E, Behr R. Importance of the pluripotency factor LIN28 in the mammalian nucleolus during early embryonic development. Development 2012; 139:4514-23; PMID:23172912; http://dx.doi.org/10.1242/dev.083279
  • Woods SJ, Hannan KM, Pearson RB, Hannan RD. The nucleolus as a fundamental regulator of the p53 response and a new target for cancer therapy. Biochimica Et Biophysica Acta 2015; 1849:821-9; PMID:25464032; http://dx.doi.org/10.1016/j.bbagrm.2014.10.007
  • Marcel V, Ghayad SE, Belin S, Therizols G, Morel AP, Solano-Gonzàlez E, Vendrell JA, Hacot S, Mertani HC, Albaret MA, et al. p53 acts as a safeguard of translational control by regulating fibrillarin and rRNA methylation in cancer. Cancer Cell 2013; 24:318-30; PMID:24029231; http://dx.doi.org/10.1016/j.ccr.2013.08.013
  • Lin YC. Human TRIM71 and its nematode homologue are targets of let-7 microRNA and its zebrafish orthologue is essential for development. Mol Biol Evolution 2007; 24:2525-34; http://dx.doi.org/10.1093/molbev/msm195

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.