2,647
Views
40
CrossRef citations to date
0
Altmetric
Extra View

The selective permeability barrier in the nuclear pore complex

, &
Pages 430-446 | Received 19 Jul 2016, Accepted 13 Sep 2016, Published online: 01 Nov 2016

References

  • Görlich D, Kutay U. Transport between the cell's nucleus and the cytoplasm. Annu Rev Cell Dev Biol 1999; 15:607-60; PMID:10611974; http://dx.doi.org/10.1146/annurev.cellbio.15.1.607
  • Floch A, Palancade B, Doye V. Fifty years of nuclear pores and nucleocytoplasmic transport studies: multiple tools revealing complex rules. Methods Cell Biol 2014; 122:1-40; PMID:24857723; http://dx.doi.org/10.1016/B978-0-12-417160-2.00001-1
  • Macara I. Transportation into and out of the nucleus. Microbiol Mol Biol Rev 2001; 65:570-94; PMID:11729264; http://dx.doi.org/10.1128/MMBR.65.4.570-594.2001
  • Tetenbaum-Novatt J, Rout M. The mechanism of nucleocytoplasmic transport through the nuclear pore complex. Cold Spring Harbor Symposia on Quantatative Biol 2014; 75:567-84; http://dx.doi.org/10.1101/sqb.2010.75.033
  • Rout M, Aitchison J, Suprapto A, Hjertaas K, Zhao Y, Chait B. The yeast nuclear pore complex: composition, architecture, and transportation mechanism. J Biol Chem 2000; 148:635-51
  • Bayliss R, Kent H, Corbett A, Stewart M. Crystallization and initial x-ray diffraction characterization of complexes of FxFG nucleoporin repeats with nuclear transport factors. J Struct Biol 2000; 131:240-7; PMID:11052897; http://dx.doi.org/10.1006/jsbi.2000.4297
  • Allen N, Huang L, Burlingame A, Rexach M. Proteomic analysis of nucleoporin interacting proteins. Biol Chem J 2001; 276:29268-74; http://dx.doi.org/10.1074/jbc.M102629200
  • Denning D, Patel S, Uversky V, Fink A, Rexach M. Disorder in the nuclear pore complex: the FG repeat regions of nucleoporins are natively unfolded. Proc Natl Acad Sci USA 2003; 100:2450-5; PMID:12604785; http://dx.doi.org/10.1073/pnas.0437902100
  • Denning D, Uversky V, Patel S, Fink A, Rexach M. The Saccharomyces cerevisiae Nucleoporin Nup2p is a natively unfolded protein. Biol Chem J 2002; 277:33447-55; http://dx.doi.org/10.1074/jbc.M203499200
  • Raices M, D'Angelo MA. Nuclear pore complex composition: a new regulator of tissue-specific and developmental functions. Nature Rev 2012; 13:687-99; http://dx.doi.org/10.1038/nrm3461
  • Löschberger A, Frank C, Krohne G, van de Linde S, Sauer M. Correlative super-resolution fluorescence and electron microscopy of the nuclear pore complex with molecular resolution. Cell Sci J 2014; 127:277-89; http://dx.doi.org/10.1242/jcs.137596
  • Terry L, Wente S. Flexible gates: dynamic topologies and functions for FG nucleoporins in nucleocytoplasmic transport. Eukaryot Cell 2009; 8:1814-27; PMID:19801417; http://dx.doi.org/10.1128/EC.00225-09
  • Denning D, Rexach M. Rapid evolution exposes the boundaries of domain structure and function in natively unfolded FG Nucleoporins. Mol Cell Proteomics 2007; 6:272-282; PMID:17079785; http://dx.doi.org/10.1074/mcp.M600309-MCP200
  • Rexach M, Blobel G. Protein import into nuclei: Association and dissociation reactions involving transport substrate, transport factors, and nucleoporins. Cell 1995; 8:683-92; http://dx.doi.org/10.1016/0092-8674(95)90181-7
  • Delphin G, Guan T, Melchior F, Gerace L. RanGTP targets p97 to RanBP2, a filamentous protein localized at the cytoplasmic periphery of the nuclear pore complex. Mol Biol 1997; Cell 8:2379-90
  • Allen N, Patel S, Huang L, Chalkley R, Burlingame A, Lutzman M, Hurt E, Rexach M. Deciphering networks of protein interactions at the nuclear pore complex. Mol Cell Proteomics 2002; 1:920-46; http://dx.doi.org/10.1074/mcp.T200012-MCP200
  • Peleg O, Lim R. Converging on the function of intrinsically disordered nucleoporins in the nuclear pore complex. Biol Chem J 2010; 291:719-30
  • Milles S, Lemke E. Single molecule study of the intrinsically disordered FG-repeat nucleoporins. Biophys J 2011; 101:1710-29; PMID:21961597; http://dx.doi.org/10.1016/j.bpj.2011.08.025
  • Patel S, Belmont B, Sante J, Rexach M. Natively unfolded nucleoporins gate protein diffusion across the nuclear pore complex. Cell 2007; 129:83-96; PMID:17418788; http://dx.doi.org/10.1016/j.cell.2007.01.044
  • Strawn L, Shen T, Shulga N, Goldfarb DS, Wente SR. Minimal nuclear pore complexes define FG repeat domains essential for transport. Nature Cell Biol 2004; 6:197-206; PMID:15039779; http://dx.doi.org/10.1038/ncb1097
  • Zeitler B, Weis K. The FG-repeat asymmetry of the nuclear pore complex is dispensible for bbulk nucleocytoplasmic transport in vivo. Cell Biol 2004; 167:583-90; http://dx.doi.org/10.1083/jcb.200407156
  • Suh E, Gumbiner B. Translocation of ß-catenin into the nucleus independent of interactions with FG-rich nucleoporins. Exp Cell Res 2003; 290:447-56; PMID:14568002; http://dx.doi.org/10.1016/S0014-4827(03)00370-7
  • Sampathkumar P, Kim S, Upla P, Rice W, Phillips J, Timney B, Pieper U, Bonanno J, Fernandez-Martinez J, Hakhverdyan Z, Ketaren N, Matsui T, Weiss T, Stokes D, Sauder J, Burley S, Sali A, Rout M, Almo S. Structure, dynamics, evolution, and function of a major scaffold component in the nuclear pore complex. Structure 2013; 21:560-71; PMID:23499021; http://dx.doi.org/10.1016/j.str.2013.02.005
  • Ando D, Colvin M, Gopinathan A. Physical motif clustering within intrisically disordered nucleoporin sequences reveals universal functional features. PLOS One 2013; 8:e73831; PMID:24066078; http://dx.doi.org/10.1371/journal.pone.0073831
  • Rout M, Wente S. Pores for thought: nuclear pore complex proteins. Trends Cell Biol 1994; 4:357-65; PMID:14731624; http://dx.doi.org/10.1016/0962-8924(94)90085-X
  • Fiserova J, Spink M, Richards S, Saunter C, Goldberg M. Entry into the nuclear pore complex is controlled by a cytoplasmic exclusion zone containing dynamic GLFG-repeat nucleoporin domains. J Cell Sci 2014; 127:124-36; PMID:24144701; http://dx.doi.org/10.1242/jcs.133272
  • Rout M, Aitchison J. The nuclear pore complex as a transport machine. Biol Chem J 2001; 276:16593-6; http://dx.doi.org/10.1074/jbc.R100015200
  • Bayliss R, Littlewood T, Stewart M. Structural basis for the interaction between FxFG nucleoporin repeats and importin-β in nuclear trafficking. Cell 2000; 102:99-108; PMID:10929717; http://dx.doi.org/10.1016/S0092-8674(00)00014-3
  • Patel S, Rexach M. Discovering novel interactions at the nuclear pore complex using bead halo. Mol Cell Proteomics 2008; 7:121-31; PMID:17897934; http://dx.doi.org/10.1074/mcp.M700407-MCP200
  • Hayakawa A, Babour A, Senggmanivong L, Dargemont C. Ubiquitylation of the nuclear pore complex controls nuclear migration during mitosis in S. cerevisiae. Cell Biol 2012; J 196:19-27; http://dx.doi.org/10.1083/jcb.201108124
  • Yamada J, Phillips J, Patel S, Goldfien G, Calestagne-Morelli A, Huang H, Reza R, Acheson J, Krishnan V, Newsam S, Gopinathan A, Lau E, Colvin M, Uversky V, Rexach M. A bimodal distribution of two distinct categories of intrinsically-disordered structures with separate functions in FG nucleoporins. Mol Cell Proteomics 2010; 9:2205-24; PMID:20368288; http://dx.doi.org/10.1074/mcp.M000035-MCP201
  • Finlay D, Forbes D. Reconstitution of biochemically altered nuclear pores:transport can be eliminated and restored. Cell 1990; 60:17-20; PMID:2295087; http://dx.doi.org/10.1016/0092-8674(90)90712-N
  • Bonitaci N, Moroianu J, Radu A, Blobel G. Karyopherin b2 mediates nuclear import of a mRNA binding protein. Proc Natl Acad Sci USA 1997; 94:5055-60; PMID:9144189; http://dx.doi.org/10.1073/pnas.94.10.5055
  • Hülsmann B, Labokha A, Görlich D. The permeability of reconstituted nuclear pores provides direct evidence for the selective phase model. Cell 2012; 150:738-51; PMID:22901806; http://dx.doi.org/10.1016/j.cell.2012.07.019
  • Bernad R, Engelsma D, Sanderson H, Pickersgill H, Fornerod M. Nup214-Nup88 nucleoporin subcomplex is required for CRM1 mediated 60 S peribosomal nuclear export. J Biol Chem 2006; 281:19378-86; PMID:16675447; http://dx.doi.org/10.1074/jbc.M512585200
  • Roloff S, Spillner C, Kehlenbach R. Several phenylalanine-glycine motives in the nuclearporin Nup214 are essential for binding of the nuclear export receptor CRM1. Biol Chem J 2013; 288:3952-63; http://dx.doi.org/10.1074/jbc.M112.433243
  • Hamada M, Haeger A, Jeganathan K, Van Ree J, Matureanu L, Walde S, Joseph J, Kehlenbach R, van Deursen J. Ran-dependant docking of importin-ß to RanBP2/Nap358 filaments is essential for protein import and cell viability. J Cell Biol 2011; 194:597-612; PMID:21859863; http://dx.doi.org/10.1083/jcb.201102018
  • Xu S, Powers M. In vivo analysis of human nucleoporin repeat domain interactions. Mol Biol Cell 2013; 24:1222-31; PMID:23427268; http://dx.doi.org/10.1091/mbc.E12-08-0585
  • Dölker N, Zachariae U, Grubmüller H. Hydrophillic linkers and polar contacts affect aggregation of FG repeat peptides. Biophys J 2010; 98:26532661
  • Popken P, Ghavami A, Onck P, Poolman B, Veenhoff L. Size-dependent leak of soluble and membrane proteins through the yeast nuclear pore complex. Mol Biol Cell 2015; 26:1386-894; PMID:25631821; http://dx.doi.org/10.1091/mbc.E14-07-1175
  • Atkinson C, Mattheyes A, Kampmann M, Sanford S. Conserved spatial organization of FG domains in the nuclear pore complex. Biophys J 2013; 104:37-50; PMID:23332057; http://dx.doi.org/10.1016/j.bpj.2012.11.3823
  • Halfmann R, Wright J, Alberti S, Lindquist S. Prion formation by a yeast GLFG nucleoporin. Prion 2012; 6:391-9; PMID:22561191; http://dx.doi.org/10.4161/pri.20199
  • Frey S, Görlich D. A saturated FG-repeat hydrogel can reproduce the permeability properties of nuclear pore complexes. . Cell 2007; 130:512-23; PMID:17693259; http://dx.doi.org/10.1016/j.cell.2007.06.024
  • Frey S, Görlich D. FG/FxFG as well as GLFG repeats form a selective permeability barrier with self-healing properties. EMBO J 2009; 58:2554-67; http://dx.doi.org/10.1038/emboj.2009.199
  • Milles S, Bui K, Koehler C, Eltsov M, Beck M, Lemke E. Facilitated aggregation of FG nucleoporins under molecular crowding conditions. EMBO Rep 2013; 14:178-83; PMID:23238392; http://dx.doi.org/10.1038/embor.2012.204
  • Miao L, Schulten K. Transport-related structures and processes of the nuclear pore complex studied through molecular dynamics. Structure 2009; 17:449-59; PMID:19278659; http://dx.doi.org/10.1016/j.str.2008.12.021
  • Naim B, Zbaida D, Dagan S, Kapon R, Reich Z. Cargo surface hydrophobicity is sufficient to overcome the nuclear pore complex selective barrier. EMBO J 2009; 28:2697-705; PMID:19680225; http://dx.doi.org/10.1038/emboj.2009.225
  • Bayliss R, Littlewood T, Strawn L, Wente S, Stewart M. GLFG and FxFG nucleoporins bind to overlapping sites and importin-β. J Biol Chem 2002; 277:50597-606; PMID:12372823; http://dx.doi.org/10.1074/jbc.M209037200
  • Zilman A, Di Talia S, Chait B, Rout M., Magnasco M. Efficiency, selectivity, and robustness of nucleocytoplasmic transport. PLoS Comput Biol 2007; 3:1281-90; http://dx.doi.org/10.1371/journal.pcbi.0030125
  • Colwell I, Brenner M, Ribber K. Charge as a selection criterion for transportation through the nuclear pore complex. PLoS Comput Biol 2010; 6:e1000747; PMID:20421988
  • Tagliazucchi M, Peleg O, Kroger M, Rabin Y, Szleifer I. Effect of charge, hydrophobicity, and sequence of nucleoporins on the translocation of model particles through the nuclear pore complex. Proc Natl Acad Sci USA 2013; 110(9):3363-8; PMID:23404701; http://dx.doi.org/10.1073/pnas.1212909110
  • Occhipinti L, Chang Y, Altvater M, Menet A, Kemmler S, Panse VG. Non-FG mediated transport of the large pre-ribosomal subunit through the nuclear pore complex by the mRNA export factor Gle2. Nucleic Acids Res 2013; 41:8266-79; PMID:23907389; http://dx.doi.org/10.1093/nar/gkt675
  • Yaseem N, Blobel G. GTP hydrolsis links initiation and termination of nuclear import on the nucleoporin Nup358. J Biol Chem 1999; 274:26493-502; PMID:10473610; http://dx.doi.org/10.1074/jbc.274.37.26493
  • Finn E, DeRoo E, Clement G, Rao S, Kruse S, Kokanovich K, Belanger K. A subset of FG nucleoporins is necessary for efficient Msn5-mediated nuclear protein export. Biochim Biophys Acta 2013; 1833:1096-103; PMID:23295456; http://dx.doi.org/10.1016/j.bbamcr.2012.12.020
  • Damelin M, Silver P. Mapping Interactions between nuclear transport factors in living cells reveals pathways through the nuclear pore complex. Mol Cell 2000; 5:133-40; PMID:10678175; http://dx.doi.org/10.1016/S1097-2765(00)80409-8
  • Otsuka S, Iwasaka S, Yoneda Y, Takeyasu K, Yoshimura SH. Individual binding pockets of importin-β for FG-Nucleoporins have different binding properties and different sensitivities to RanGTP. PNAS 2008; 41:8266-79
  • Clarkson W, Kent H, Stewart M. Separate binding sites on nuclear transport factor 2 (NTF2) for GDP-Ran and the phenylalanine-rich repeat regions of nucleoporins p62 and Nsp1p. J Mol Biol 1996; 263:517-24; PMID:8918934; http://dx.doi.org/10.1006/jmbi.1996.0594
  • Shah S, Forbes D. Separate nuclear import pathways converge on the nucleoporin Nup153 and can be dissected with dominant negative inhibitors. Curr Biol 1998; 8:1376-86; PMID:9889100; http://dx.doi.org/10.1016/S0960-9822(98)00018-9
  • Tu L, Fu G, Zilman A, Musser S. Large cargo transport by nuclear pores: implications for the spatial organization of Fg-nucleoporins. EMBO J 2013; 32:3220-30; PMID:24213245; http://dx.doi.org/10.1038/emboj.2013.239
  • Miao L, Schulten K. Probing a structural model of the nuclear pore complex studied through molecular dynamics. Biophys J 2010; 98:1658-67; PMID:20409487; http://dx.doi.org/10.1016/j.bpj.2009.12.4305
  • Goryaynov A, Yang W. Role of molecular charge in nucleocytoplasmic transport. PLOS One 2014; 9:e88792; PMID:24558427; http://dx.doi.org/10.1371/journal.pone.0088792
  • Rout M, Aitchison J, Magnasco M, Chait B. Virtual gating and nuclear transport: the whole picture. Trends Cell Biol 2003; 13:622-8; PMID:14624840; http://dx.doi.org/10.1016/j.tcb.2003.10.007
  • Lim R, Köser J, Huang N, Schwarz-Herion K, Aebi U. Nanomechanical interactions of phenylalanine-glycine nucleoporins studied by single molecule force-volume spectroscopy. Struct Biol J 2007; 159:277-89; http://dx.doi.org/10.1016/j.jsb.2007.01.018
  • Lim R, Huang N, Koser J, Deng J, Lau K, Schwart-Herion K, Aebi U. Flexible phenylalanine-glycine nuceloporins as entropic barriers to nucleocytoplasmic transport. Proc Natl Acad Sci USA 2006; 103:9512-17; PMID:16769882; http://dx.doi.org/10.1073/pnas.0603521103
  • Caradelli F, Lanzano L, Graton E. Capturing directed molecular motion in the nuclear pore complex of live cells. Proc Natl Acad Sci USA 2012; 109:9863-8; PMID:22665783; http://dx.doi.org/10.1073/pnas.1200486109
  • Ribbeck K, Görlich D. Kinetic analysis of translocation through nuclear pore complexes. EMBO J 2001; 20:1320-30; PMID:11250898; http://dx.doi.org/10.1093/emboj/20.6.1320
  • Eisele N, Frey S, Piehler J, Görlich D, Richter R. Ultrathin nucleoporin phenylalanine-glycine repeat films and their interaction with nuclear transport receptors. EMBO Rep 2012; 11:366-72; http://dx.doi.org/10.1038/embor.2010.34
  • Peters R. Translocation through the nuclear pore complex: selectivity and speed by reduction-of-dimensionality. Traffic 2005; 6:421-427; PMID:15813752; http://dx.doi.org/10.1111/j.1600-0854.2005.00287.x
  • Gamini R, Han W, Stone J, Schulten K. Assembly of Nsp1 nucleoporins provides insight into nuclear pore complex gating. PLoS Comput Biol 2014; 10:e1003488; PMID:24626154; http://dx.doi.org/10.1371/journal.pcbi.1003488
  • Yang W. ‘Natively unfolded’ nucleporins in nucleocytoplasmic transport. Nucleus 2011; 2:10-16; PMID:21647294
  • Yang W. Distinct, but not completely separate spatial transport routes in the nuclear pore complex. Nucleus 2013; 4:166-75; PMID:23669120; http://dx.doi.org/10.4161/nucl.24874
  • Ma J, Yang W. Three-dimentional distribution of transient interactions in the nuclear pore comple obtained from single-molecule snapshots. Proc Natl Acad Sci USA 2010; 107:7305-10; PMID:20368455; http://dx.doi.org/10.1073/pnas.0908269107
  • Ma J, Goryanov A, Sarma A, Yang W. Self-regulated viscous channel in the nuclear pore complex. Proc Natl Acad Sci USA 2012; 109:7326-31; PMID:22529346; http://dx.doi.org/10.1073/pnas.1201724109
  • Schnell S, Ma J, Yang W. Three-dimensional mapping of mRNA export through the nuclear pore compex. Genes 2014; 5:1032-1049; PMID:25393401; http://dx.doi.org/10.3390/genes5041032
  • Ma J, Goryanov A, Yang W. Super-resolution 3D tomography of interactions and competition in the nuclear pore complex. Nat Struct Mol Biol 2016; 23:239-47; PMID:26878241; http://dx.doi.org/10.1038/nsmb.3174
  • Ghavami A, Veenhoff L, Giessen E, Onck P. Probing the disordered domain of the nulear pore complex through coarse-grained molecular dynomics simulations. Biophys J 2014; 107:1393-1402; PMID:25229147; http://dx.doi.org/10.1016/j.bpj.2014.07.060
  • Eibauer M, Pellanda M, Turgay Y, Dubrovsky A, Wild A, Medalia O. Structure and gating of the nuclear pore complex. Nat Commun 2015; 6:7532-40; PMID:26112706; http://dx.doi.org/10.1038/ncomms8532

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.