1,511
Views
8
CrossRef citations to date
0
Altmetric
Original Research

Comparing lamin proteins post-translational relative stability using a 2A peptide-based system reveals elevated resistance of progerin to cellular degradation

, , &
Pages 585-596 | Received 09 Sep 2016, Accepted 10 Nov 2016, Published online: 08 Dec 2016

References

  • Fawcett DW. On the occurrence of a fibrous lamina on the inner aspect of the nuclear envelope in certain cells of vertebrates. Am J Anat (1966); 119:129-45; PMID:6007824; http://dx.doi.org/10.1002/aja.1001190108
  • Goldman RD, Gruenbaum Y, Moir RD, Shumaker DK, Spann TP. Nuclear lamins: building blocks of nuclear architecture. Genes Dev (2002); 16:533-47; PMID:11877373; http://dx.doi.org/10.1101/gad.960502
  • Krohne G, Benavente R, Scheer U, Dabauvalle MC. The nuclear lamina in Heidelberg and W??rzburg: A personal view. Eur J Cell Biol (2005); 84:163-179; PMID:15819398; http://dx.doi.org/10.1016/j.ejcb.2004.12.005
  • McKeon FD, Kirschner MW, Caput D. Homologies in both primary and secondary structure between nuclear envelope and intermediate filament proteins. Nature (1986); 319:463-8; PMID:3453101; http://dx.doi.org/10.1038/319463a0
  • Furukawa K, Inagaki H, Hotta Y. Identification and cloning of an mRNA coding for a germ cell-specific A-type lamin in mice. Exp Cell Res (1994); 212:426-30; PMID:8187835; http://dx.doi.org/10.1006/excr.1994.1164
  • Machiels BM, Zorenc AH, Endert JM, Kuijpers HJ, van Eys GJ, Ramaekers FC, Broers JL. An alternative splicing product of the lamin A/C gene lacks exon 10. J Biol Chem (1996); 271:9249-53; PMID:8621584; http://dx.doi.org/10.1074/jbc.271.16.9249
  • Pollard KM, Chan EK, Grant BJ, Sullivan KF, Tan EM, Glass CA. In vitro posttranslational modification of lamin B cloned from a human T-cell line. Mol Cell Biol (1990); 10:2164-75; PMID:2325650; http://dx.doi.org/10.1128/MCB.10.5.2164
  • Furukawa K, Hotta Y. cDNA cloning of a germ cell specific lamin B3 from mouse spermatocytes and analysis of its function by ectopic expression in somatic cells. EMBO J (1993); 12:97-106; PMID:8094052
  • Spann TP, Goldman AE, Wang C, Huang S, Goldman RD. Alteration of nuclear lamin organization inhibits RNA polymerase II-dependent transcription. J Cell Biol (2002); 156:603-8; PMID:11854306; http://dx.doi.org/10.1083/jcb.200112047
  • Bridger JM, Foeger N, Kill IR, Herrmann H. The nuclear lamina. Both a structural framework and a platform for genome organization. FEBS J (2007); 274:1354-61
  • Gruenbaum Y, Foisner R. Lamins: Nuclear Intermediate Filament Proteins with Fundamental Functions in Nuclear Mechanics and Genome Regulation. Annu Rev Biochem (2014); 84:150306093657004
  • Capell BC, Collins FS. Human laminopathies: nuclei gone genetically awry. Nat Rev Genet (2006); 7:940-52; PMID:17139325; http://dx.doi.org/10.1038/nrg1906
  • Cao K, Park C. Cellular Basis of Laminopathies (2012); 1-7
  • Sarkar PK, Shinton RA. Hutchinson-Guilford progeria syndrome. Postgrad Med J (2001); 77:312-7; PMID:11320273; http://dx.doi.org/10.1136/pmj.77.907.312
  • Hutchinson J. Congenital absence of hair and mammary glands with atrophic condition of the skin and its appendages, in a boy whose mother had been almost wholly bald from alopecia areata from the age of Six. Med Chir Trans (1886); 69:473-7; PMID:20896687; http://dx.doi.org/10.1177/095952878606900127
  • Eriksson M, Brown WT, Gordon LB, Glynn MW, Singer J, Scott L, Erdos MR, Robbins CM, Moses TY, Berglund P, et al. Recurrent de novo point mutations in lamin A cause Hutchinson-Gilford progeria syndrome. Nature (2003); 423:293-8; PMID:12714972; http://dx.doi.org/10.1038/nature01629
  • Sinensky M, Fantle K, Trujillo M, McLain T, Kupfer A, Dalton M. The processing pathway of prelamin A. J Cell Sci (1994); 107:( Pt 1, 61-7; PMID:8175923
  • De Sandre-Giovannoli A, Bernard R, Cau P, Navarro C, Amiel J, Boccaccio I, Lyonnet S, Stewart CL, Munnich A, Le Merrer M, et al. Lamin a truncation in Hutchinson-Gilford progeria. Science (2003); 300:2055; PMID:12702809; http://dx.doi.org/10.1126/science.1084125
  • D'Apice MR, Tenconi R, Mammi I, van den Ende J, Novelli G. Paternal origin of LMNA mutations in Hutchinson-Gilford progeria. Clin Genet (2004); 65:52-4; http://dx.doi.org/10.1111/j..2004.00181.x
  • Cao K, Capell BC, Erdos MR, Djabali K, Collins FS. A lamin A protein isoform overexpressed in Hutchinson-Gilford progeria syndrome interferes with mitosis in progeria and normal cells. Proc Natl Acad Sci U S A (2007); 104:4949-54; PMID:17360355; http://dx.doi.org/10.1073/pnas.0611640104
  • Goldman RD, Shumaker DK, Erdos MR, Eriksson M, Goldman AE, Gordon LB, Gruenbaum Y, Khuon S, Mendez M, Varga R, et al. Accumulation of mutant lamin A causes progressive changes in nuclear architecture in Hutchinson-Gilford progeria syndrome. Proc Natl Acad Sci U S A (2004); 101:8963-8; PMID:15184648; http://dx.doi.org/10.1073/pnas.0402943101
  • McCord RP, Nazario-Toole A, Zhang H, Chines PS, Zhan Y, Erdos MR, Collins FS, Dekker J, Cao K. Correlated alterations in genome organization, histone methylation, and DNA-lamin A/C interactions in Hutchinson-Gilford progeria syndrome. Genome Res (2013); 23:260-9; PMID:23152449; http://dx.doi.org/10.1101/gr.138032.112
  • DeBusk FL. The Hutchinson-Gilford progeria syndrome. Report of 4 cases and review of the literature. J Pediatr (1972); 80:697-724; PMID:4552697; http://dx.doi.org/10.1016/S0022-3476(72)80229-4
  • Baker PB, Baba N, Boesel CP. Cardiovascular abnormalities in progeria. Case report and review of the literature. Arch Pathol Lab Med (1981); 105:384-6; PMID:6894691
  • Gordon LB, Massaro J, D'Agostino RB Sr, Campbell SE, Brazier J, Brown WT, Kleinman ME, Kieran MW; Progeria Clinical Trials Collaborative. Impact of farnesylation inhibitors on survival in Hutchinson-Gilford progeria syndrome. Circulation (2014); 130:27-34; PMID:24795390; http://dx.doi.org/10.1161/CIRCULATIONAHA.113.008285
  • Ullrich NJ, Gordon LB. Hutchinson-Gilford progeria syndrome. Handb Clin Neurol (2015); 132:249-64; PMID:26564085; http://dx.doi.org/10.1016/B978-0-444-62702-5.00018-4
  • Zhou P. Determining protein half-lives. Methods Mol Biol (2004); 284:67-77; PMID:15173609
  • Fritzsche S, Springer S. Pulse-chase analysis for studying protein synthesis and maturation. Curr Protoc Protein Sci (2014); 78:30.3.1-23
  • Bertacchini J, Beretti F, Cenni V, Guida M, Gibellini F, Mediani L, Marin O, Maraldi NM, de Pol A, Lattanzi G, et al. The protein kinase Akt/PKB regulates both prelamin A degradation and Lmna gene expression. FASEB J (2013); 27:2145-55; PMID:23430973; http://dx.doi.org/10.1096/fj.12-218214
  • Dechat T, Adam SA, Taimen P, Shimi T, Goldman RD. Nuclear lamins. Cold Spring Harb Perspect Biol (2010); 2:a000547; PMID:20826548; http://dx.doi.org/10.1101/cshperspect.a000547
  • Rodriguez-Contreras D, Aslan H, Feng X, Tran K, Yates PA, Kamhawi S, Landfear SM. Regulation and biological function of a flagellar glucose transporter in Leishmania mexicana: a potential glucose sensor. FASEB J (2015); 29:11-24; PMID:25300620; http://dx.doi.org/10.1096/fj.14-251991
  • De Felipe P, Luke GA, Hughes LE, Gani D, Halpin C, Ryan MD. E unum pluribus: Multiple proteins from a self-processing polyprotein. Trends Biotechnol (2006); 24:68-75; PMID:16380176; http://dx.doi.org/10.1016/j.tibtech.2005.12.006
  • Ryan MD, King AM, Thomas GP. Cleavage of foot-and-mouth disease virus polyprotein is mediated by residues located within a 19 amino acid sequence. J Gen Virol (1991); 72:( Pt 11, 2727-32; PMID:1658199; http://dx.doi.org/10.1099/0022-1317-72-11-2727
  • Donnelly ML, Luke G, Mehrotra A, Li X, Hughes LE, Gani D, Ryan MD. Analysis of the aphthovirus 2A/2B polyprotein ‘cleavage’ mechanism indicates not a proteolytic reaction, but a novel translational effect: a putative ribosomal ‘skip’. J Gen Virol (2001); 82:1013-25; PMID:11297676; http://dx.doi.org/10.1099/0022-1317-82-5-1013
  • de Felipe P, Luke GA, Brown JD, Ryan MD. Inhibition of 2A-mediated ‘cleavage’ of certain artificial polyproteins bearing N-terminal signal sequences. Biotechnol J (2010); 5:213-23; PMID:19946875; http://dx.doi.org/10.1002/biot.200900134
  • Kim JH, Lee SR, Li LH, Park HJ, Park JH, Lee KY, Kim MK, Shin BA, Choi SY. High cleavage efficiency of a 2A peptide derived from porcine teschovirus-1 in human cell lines, zebrafish and mice. PLoS One (2011); 6:1-8
  • Xiong Z-M, Choi JY, Wang K, Zhang H, Tariq Z, Wu D, Ko E, LaDana C, Sesaki H, Cao K. Methylene blue alleviates nuclear and mitochondrial abnormalities in progeria. Aging Cell (2015); 15:279-90; PMID:26663466; http://dx.doi.org/10.1111/acel.12434
  • Toth JI, Yang SH, Qiao X, Beigneux AP, Gelb MH, Moulson CL, Miner JH, Young SG, Fong LG. Blocking protein farnesyltransferase improves nuclear shape in fibroblasts from humans with progeroid syndromes. Proc Natl Acad Sci U S A (2005); 102:12873-8; PMID:16129834; http://dx.doi.org/10.1073/pnas.0505767102
  • Yang SH, Meta M, Qiao X, Frost D, Bauch J, Coffinier C, Majumdar S, Bergo MO, Young SG, Fong LG. A farnesyltransferase inhibitor improves disease phenotypes in mice with a Hutchinson-Gilford progeria syndrome mutation. J Clin Invest (2006); 116:2115-21; PMID:16862216; http://dx.doi.org/10.1172/JCI28968
  • Capell BC, Erdos MR, Madigan JP, Fiordalisi JJ, Varga R, Conneely KN, Gordon LB, Der CJ, Cox AD, Collins FS. Inhibiting farnesylation of progerin prevents the characteristic nuclear blebbing of Hutchinson-Gilford progeria syndrome. Proc Natl Acad Sci U S A (2005); 102:12879-84; PMID:16129833; http://dx.doi.org/10.1073/pnas.0506001102
  • Gordon LB, Kleinman ME, Miller DT, Neuberg DS, Giobbie-Hurder A, Gerhard-Herman M, Smoot LB, Gordon CM, Cleveland R, Snyder BD, et al. Clinical trial of a farnesyltransferase inhibitor in children with Hutchinson – Gilford progeria syndrome 2012); 2-7
  • Adam SA, Butin-Israeli V, Cleland MM, Shimi T, Goldman RD. Disruption of lamin B1 and lamin B2 processing and localization by farnesyltransferase inhibitors. Nucleus (2013); 4:142-50; PMID:23475125; http://dx.doi.org/10.4161/nucl.24089
  • Adam SA, Butin-Israeli V, Cleland MM, Shimi T, Goldman RD. Disruption of lamin B1 and lamin B2 processing and localization by farnesyltransferase inhibitors. Nucleus (2013); 4:142-50; PMID:23475125; http://dx.doi.org/10.4161/nucl.24089
  • Cao K, Blair CD, Faddah DA, Kieckhaefer JE, Olive M, Erdos MR, Nabel EG, Collins FS. Progerin and telomere dysfunction collaborate to trigger cellular senescence in normal human fibroblasts (2011); 121
  • Capell BC, Olive M, Erdos MR, Cao K, Faddah DA, Tavarez UL, Conneely KN, Qu X, San H, Ganesh SK, et al. A farnesyltransferase inhibitor prevents both the onset and late progression of cardiovascular disease in a progeria mouse model. Proc Natl Acad Sci U S A (2008); 105:15902-7; PMID:18838683; http://dx.doi.org/10.1073/pnas.0807840105
  • Verstraeten VL, Peckham LA, Olive M, Capell BC, Collins FS, Nabel EG, Young SG, Fong LG, Lammerding J. Protein farnesylation inhibitors cause donut-shaped cell nuclei attributable to a centrosome separation defect. Proc Natl Acad Sci (2011); 108:4997-5002; PMID:21383178; http://dx.doi.org/10.1073/pnas.1019532108
  • Maske CP, Hollinshead MS, Higbee NC, Bergo MO, Young SG, Vaux DJ. A carboxyl-terminal interaction of lamin B1 is dependent on the CAAX endoprotease Rce1 and carboxymethylation. J Cell Biol (2003); 162:1223-32; PMID:14504265; http://dx.doi.org/10.1083/jcb.200303113
  • Jung H-J, Nobumori C, Goulbourne CN, Tu Y, Lee JM, Tatar A, Wu D, Yoshinaga Y, de Jong PJ, Coffinier C, et al. Farnesylation of lamin B1 is important for retention of nuclear chromatin during neuronal migration. Proc Natl Acad Sci U S A (2013); 110, E1923-32; PMID:23650370; http://dx.doi.org/10.1073/pnas.1303916110
  • Dou Z, Xu C, Donahue G, Shimi T, Pan JA, Zhu J, Ivanov A, Capell BC, Drake AM, Shah PP, et al. Autophagy mediates degradation of nuclear lamina. Nature (2015); 527:1-17; ; http://dx.doi.org/10.1038/nature15548
  • GREENBERG JR. High Stability of Messenger RNA in Growing Cultured Cells. Nature (1972); 240:102-4; PMID:4564814; http://dx.doi.org/10.1038/240102a0
  • Wu D, Flannery AR, Cai H, Ko E, Cao K. Nuclear localization signal deletion mutants of lamin A and progerin reveal insights into lamin A processing and emerin targeting. Nucleus (2014); 5:66-74; PMID:24637396; http://dx.doi.org/10.4161/nucl.28068