2,582
Views
0
CrossRef citations to date
0
Altmetric
Review

Architectural control of mesenchymal stem cell phenotype through nuclear actin

ORCID Icon, ORCID Icon & ORCID Icon
Pages 35-48 | Received 09 Dec 2021, Accepted 11 Jan 2022, Published online: 08 Feb 2022

References

  • Ingber DE. Tensegrity-based mechanosensing from macro to micro. Prog Biophys Mol Biol. 2008;97(2–3):163–179.
  • Burridge K. Focal adhesions: a personal perspective on a half century of progress. FEBS J. 2017;284(20):3355–3361.
  • Rubin J, Sen B. Actin up in the nucleus: regulation of actin structures modulatesmesenchymal stem cell differentiation. Trans Am Clin Climatol Assoc. 2017;128:180–192.
  • Szczesny SE, Mauck RL. The nuclear option: evidence implicating the cell nucleus in mechanotransduction. J Biomech Eng. 2017;139(2). DOI:10.1115/1.4035350
  • Hao H, Starr DA. SUN/KASH interactions facilitate force transmission across the nuclear envelope. Nucleus. 2019;10(1):73–80.
  • Lombardi ML, Jaalouk DE, Shanahan CM, et al. The interaction between nesprins and sun proteins at the nuclear envelope is critical for force transmission between the nucleus and cytoskeleton. J Biol Chem. 2011;286(30):26743–26753.
  • Yang Y,Qu, R., Fan, T., Zhu, X., Feng, Y., Yang, Y., Deng, T., Peng, Y., Huang, W., Ouyang, J. and Dai, J. Cross-talk between microtubules and the linker of nucleoskeleton complex plays a critical role in the adipogenesis of human adipose-derived stem cells. Stem Cell Res Ther. 2018;9(1):125.
  • Burke B, Stewart CL. The nuclear lamins: flexibility in function. Nat Rev Mol Cell Biol. 2013;14(1):13–24.
  • Stephens AD, Liu PZ, Banigan EJ, et al. Chromatin histone modifications and rigidity affect nuclear morphology independent of lamins. Mol Biol Cell. 2018;29(2):220–233.
  • Hampoelz B, Lecuit T. Nuclear mechanics in differentiation and development. Curr Opin Cell Biol. 2011;23(6):668–675.
  • Lammerding J, Fong LG, Ji JY, et al. Lamins A and C but not lamin B1 regulate nuclear mechanics. J Biol Chem. 2006;281(35):25768–25780.
  • Underwood JM, Becker KA, Stein GS, et al. The ultrastructural signature of human embryonic stem cells. J Cell Biochem. 2017;118(4):764–774.
  • Heo SJ, Driscoll TP, Thorpe SD, et al. Differentiation alters stem cell nuclear architecture, mechanics, and mechanosensitivity. Elife. 2016;5. DOI:10.7554/eLife.18207
  • Goelzer M, Dudakovic, A., Olcum, M., Sen, B., Ozcivici, E., Rubin, J., van Wijnen, A.J. and Uzer, G. Lamin A/C is dispensable to mechanical repression of adipogenesis. Int J Mol Sci. 2021;22(12):6580.
  • Funkhouser CM, Sknepnek, R., Shimi, T., Goldman, A.E., Goldman, R.D. and De La Cruz, M.O. Mechanical model of blebbing in nuclear lamin meshworks. Proc Natl Acad Sci U S A. 2013;110(9):603–613.
  • Li Y, Lovett D, Zhang Q, et al. Moving cell boundaries drive nuclear shaping during cell spreading. Biophys J. 2015;109(4):670–686.
  • Gumbiner BM. Regulation of cadherin-mediated adhesion in morphogenesis. Nat Rev Mol Cell Biol. 2005;6(8):622–634.
  • Little-Letsinger SE,Pagnotti, G. M., McGrath, C., and Styner, M. Exercise and diet: uncovering prospective mediators of skeletalfragility in bone and marrow adipose tissue. Curr Osteoporos Rep. 2020;18(6):774–789.
  • Engler AJ, Sen S, Sweeney HL, et al. Matrix elasticity directs stem cell lineage specification. Cell. 2006;126(4):677–689.
  • Uzer G, Fuchs RK, Rubin J, et al. Concise review: plasma and nuclear membranes convey mechanical information to regulate mesenchymal stem cell lineage. Stem Cells. 2016;34(6):1455–1463.
  • Pittenger MF, Discher DE, Péault BM, et al. Mesenchymal stem cell perspective: cell biology to clinical progress. NPJ Regen Med. 2019;4:22.
  • Sen B, Xie Z, Case N, et al. mTORC2 regulates mechanically induced cytoskeletal reorganization and lineage selection in marrow-derived mesenchymal stem cells. J Bone Miner Res. 2014;29(1):78–89.
  • Luxton GG, Starr DA. KASHing up with the nucleus: novel functional roles of KASH proteins at the cytoplasmic surface of the nucleus. Curr Opin Cell Biol. 2014;28:69–75.
  • Versaevel M, Braquenier J-B, Riaz M, et al. Super-resolution microscopy reveals LINC complex recruitment at nuclear indentation sites. Sci Rep. 2015;4(1):7362.
  • Tajik A, Zhang Y, Wei F, et al. Transcription upregulation via force-induced direct stretching of chromatin. Nat Mater. 2016;15(12):1287–1296.
  • Guilluy C, Dubash AD, Garcia-Mata R. Analysis of RhoA and Rho GEF activity in whole cells and the cell nucleus. Nat Protoc. 2011;6(12):2050–2060.
  • Thompson WR, Yen SS, Uzer G, et al. LARG GEF and ARHGAP18 orchestrate RhoA activity to control mesenchymal stem cell lineage. Bone. 2018;107:172–180.
  • Reynolds N, McEvoy E, Ghosh S, et al. Image-derived modeling of nucleus strain amplification associated with chromatin heterogeneity. Biophys J. 2021;120(8):1323–1332.
  • Martins RP, Finan JD, Farshid G, et al. Mechanical regulation of nuclear structure and function. Annu Rev Biomed Eng. 2012;14:431–455.
  • Zuela-Sopilniak N,Bar-Sela, D., Charar, C., Wintner, O., Gruenbaum, Y. and Buxboim, A. Measuring nucleus mechanics within a living multicellular organism: physical decoupling and attenuated recovery rate are physiological protective mechanisms of the cell nucleus under high mechanical load. Mol Biol Cell. 2020;31(17):1943–1950.
  • Newberg J Bar-Sela, D., Charar, C., Wintner, O., Gruenbaum, Y. and Buxboim, A. Isolated nuclei stiffen in response to low intensity vibration. J Biomech. 2020;111:110012.
  • Swift J, Ivanovska IL, Buxboim A, et al. Nuclear lamin-A scales with tissue stiffness and enhances matrix-directed differentiation. Science. 2013;341(6149):1240104.
  • Buxboim A, Swift J, Irianto J, et al. Matrix elasticity regulates lamin-A,C phosphorylation and turnover with feedback to actomyosin. Curr Biol. 2014;24(16):1909–1917.
  • Kent IA, Zhang Q, Katiyar A, et al. Apical cell protrusions cause vertical deformation of the soft cancer nucleus. J Cell Physiol. 2019;234(11):20675–20684.
  • Strom AR, Biggs RJ, Banigan EJ, et al. HP1alpha is a chromatin crosslinker that controls nuclear and mitotic chromosome mechanics. Elife. 2021;10. DOI:10.7554/eLife.63972
  • Maeshima K, Tamura S, Shimamoto Y. Chromatin as a nuclear spring. Biophys Physicobiol. 2018;15:189–195.
  • Chancellor TJ, Lee J, Thodeti CK, et al. Actomyosin tension exerted on the nucleus through nesprin-1 connections influences endothelial cell adhesion, migration, and cyclic strain-induced reorientation. Biophys J. 2010;99(1):115–123.
  • Heo SJ, Thorpe SD, Driscoll TP, et al. Biophysical regulation of chromatin architecture instills a mechanical memory in mesenchymal stem cells. Sci Rep. 2015;5:16895.
  • Nava MM, Miroshnikova YA, Biggs LC, et al. Heterochromatin-driven nuclear softening protects the genome against mechanical stress-induced damage. Cell. 2020;181(4):800–817. e22.
  • Fischer T, Hayn A, Mierke CT. Effect of Nuclear Stiffness on Cell Mechanics and Migration of Human Breast Cancer Cells. Front Cell Dev Biol. 2020;8:393.
  • Guilluy C, Osborne LD, Van Landeghem L, et al. Isolated nuclei adapt to force and reveal a mechanotransduction pathway in the nucleus. Nat Cell Biol. 2014;16(4):376–381.
  • Lammerding J, Hsiao J, Schulze PC, et al. Abnormal nuclear shape and impaired mechanotransduction in emerin- deficient cells. J Cell Biol. 2005;170(5):781–791.
  • Neelam S, Chancellor TJ, Li Y, et al. Direct force probe reveals the mechanics of nuclear homeostasis in the mammalian cell. Proc Natl Acad Sci U S A. 2015;112(18):5720–5725.
  • Sen B, Xie Z, Uzer G, et al. Intranuclear Actin Regulates Osteogenesis. Stem Cells. 2015;33(10):3065–3076.
  • Sen B, Xie, Z., Howard, S., Styner, M., j., van Wijnen, A., Uzer, G. and Rubin, J. Mechanically induced nuclear shuttling of b-catenin requires co-transfer of actin. BioRxvi. 2021.
  • Hofmann WA, Stojiljkovic L, Fuchsova B, et al. Actin is part of pre-initiation complexes and is necessary for transcription by RNA polymerase II. Nat Cell Biol. 2004;6(11):1094–1101.
  • Hyrskyluoto A, Vartiainen MK. Regulation of nuclear actin dynamics in development anddisease. Curr Opin Cell Biol. 2020;64:18–24.
  • de Lanerolle P, Serebryannyy L. Nuclear actin and myosins: life without filaments. Nat Cell Biol. 2011;13(11):1282–1288.
  • Kloc M, Chanana, P., Vaughn, N., Uosef, A., Kubiak, J.Z. and Ghobrial, R.M. New insights into cellular functions of nuclear actin. Biology (Basel). 2021;10(4):304.
  • Xie X, Mahmood SR, Gjorgjieva T, et al. Emerging roles of cytoskeletal proteins in regulating gene expression and genome organization during differentiation. Nucleus. 2020;11(1):53–65.
  • Dopie J, Skarp K-P, Kaisa Rajakyla E, et al. Active maintenance of nuclear actin by importin 9 supports transcription. Proc Natl Acad Sci U S A. 2012;109(9):E544–52.
  • Kanellos G, Frame MC. Cellular functions of the ADF/cofilin family at a glance. J Cell Sci. 2016;129(17):3211–3218.
  • Obrdlik A, Percipalle P. The F-actin severing protein cofilin-1 is required for RNA polymerase II transcription elongation. Nucleus. 2011;2(1):72–79.
  • Stuven T, Hartmann E, Gorlich D. Exportin 6: a novel nuclear export receptor that is specific for profilin.actin complexes. EMBO J. 2003;22(21):5928–5940.
  • Kapoor P, Shen X. Mechanisms of nuclear actin in chromatin-remodeling complexes. Trends Cell Biol. 2014;24(4):238–246.
  • Grosse R, Vartiainen MK. To be or not to be assembled: progressing into nuclear actinfilaments. Nat Rev Mol Cell Biol. 2013;14(11):693–697.
  • Baarlink C, Grosse R. Formin’ actin in the nucleus. Nucleus. 2014;5(1):15–20.
  • Sankaran JS, Sen B, Dudakovic A, et al. Knockdown of formin mDia2 alters lamin B1 levels and increasesosteogenesis in stem cells. Stem Cells. 2020;38(1):102–117.
  • Hotulainen P, Lappalainen P. Stress fibers are generated by two distinct actin assembly mechanisms in motile cells. J Cell Biol. 2006;173(3):383–394.
  • Lamm N, Read MN, Nobis M, et al. Nuclear F-actin counteracts nuclear deformation and promotes fork repair during replication stress. Nat Cell Biol. 2020;22(12):1460–1470.
  • Verboon JM, Nakamura, M., Davidson, K.A., Decker, J.R., Nandakumar, V. and Parkhurst, S.M. Drosophila wash and the wash regulatory complex function in nuclear envelope budding. J Cell Sci. 2020;133(13):jcs243576.
  • Pollard TD. Regulation of actin filament assembly by Arp2/3 complex and formins. Annu Rev Biophys Biomol Struct. 2007;36:451–477.
  • Verboon JM, Rincon-Arano H, Werwie T, et al. Wash interacts with lamin and affects global nuclear organization. Curr Biol. 2015;25(6):804–810.
  • Sen B, Uzer G, Samsonraj RM, et al. Intranuclear actin structure modulates mesenchymal stem cell differentiation. Stem Cells. 2017;35(6):1624–1635.
  • Yamazaki S, Gerhold, C., Yamamoto, K., Ueno, Y., Grosse, R., Miyamoto, K. and Harata, M. The actin-family protein Arp4 is a novel suppressor for the formation and functions of nuclear F-actin. Cells. 2020;9(3):jcs243576.
  • Vartiainen MK, Guettler S, Larijani B, et al. Nuclear actin regulates dynamic subcellular localization and activity of the SRF cofactor MAL. Science. 2007;316(5832):1749–1752.
  • Munsie LN, Desmond CR, Truant R. Cofilin nuclear-cytoplasmic shuttling affects cofilin- actin rod formation during stress. J Cell Sci. 2012;125(17):3977–3988.
  • Kiseleva E, Drummond SP, Goldberg MW, et al. Actin- and protein-4.1-containing filaments link nuclear pore complexes to subnuclear organelles in Xenopus oocyte nuclei. J Cell Sci. 2004;117(12):2481–2490.
  • Schoenenberger CA, Buchmeier, S., Boerries, M., Sütterlin, R., Aebi, U. and Jockusch, B.M. Conformation-specific antibodies reveal distinct actin structures in the nucleus and the cytoplasm. J Struct Biol. 2005;152(3):157–168.
  • Belin BJ, Cimini BA, Blackburn EH, et al. Visualization of actin filaments and monomers in somatic cell nuclei. Mol Biol Cell. 2013;24(7):982–994.
  • Melak M, Plessner M, Grosse R. Actin visualization at a glance. J Cell Sci. 2017;130(3):525–530.
  • Baarlink C, Plessner M, Sherrard A, et al. A transient pool of nuclear F-actin at mitotic exit controls chromatin organization. Nat Cell Biol. 2017;19(12):1389–1399.
  • Baarlink C, Wang H, Grosse R. Nuclear actin network assembly by formins regulates the SRF coactivator MAL. Science. 2013;340(6134):864–867.
  • Ozcivici E, Luu YK, Adler B, et al. Mechanical signals as anabolic agents in bone. Nat Rev Rheumatol. 2010;6(1):50–59.
  • Little-Letsinger SE, Rubin, J., Diekman, B., Rubin, C.T., McGrath, C., Pagnotti, G.M., Klett, E.L. and Styner, M. Exercise to mend aged-tissue crosstalk in bone targeting osteoporosis & osteoarthritis. Semin Cell Dev Biol. 2021.
  • Sen B, Styner M, Xie Z, et al. Mechanical loading regulates NFATc1 and beta-catenin signaling through a GSK3beta control node. J Biol Chem. 2009;284(50):34607–34617.
  • Aragona M, Panciera T, Manfrin A, et al. A mechanical checkpoint controls multicellular growth through YAP/TAZ regulation by actin-processing factors. Cell. 2013;154(5):1047–1059.
  • Le HQ, Ghatak S, Yeung C-YC, et al. Mechanical regulation of transcription controls polycomb-mediated gene silencing during lineage commitment. Nat Cell Biol. 2016;18(8):864–875.
  • Makhija E, Jokhun DS, Shivashankar GV. Nuclear deformability and telomere dynamics are regulated by cell geometric constraints. Proc Natl Acad Sci U S A. 2016;113(1):E32–40.
  • Rashmi RN, Eckes B, Glöckner G, et al. The nuclear envelope protein Nesprin-2 has roles in cell proliferation and differentiation during wound healing. Nucleus. 2012;3(2):172–186.
  • Fischle W, Wang Y, Jacobs SA, et al. Molecular basis for the discrimination of repressive methyl-lysine marks in histone H3 by polycomb and HP1 chromodomains. Genes Dev. 2003;17(15):1870–1881.
  • Maison C, Almouzni G. HP1 and the dynamics of heterochromatin maintenance. Nat Rev Mol Cell Biol. 2004;5(4):296–304.
  • Pal S, Tyler JK. Epigenetics and aging. Sci Adv. 2016;2(7):e1600584.
  • Wood JG, Hillenmeyer S, Lawrence C, et al. Chromatin remodeling in the aging genome of drosophila. Aging Cell. 2010;9(6):971–978.
  • Shumaker DK, Dechat T, Kohlmaier A, et al. Mutant nuclear lamin A leads to progressive alterations of epigenetic control in premature aging. Proc Natl Acad Sci U S A. 2006;103(23):8703–8708.
  • Spichal M, Brion A, Herbert S, et al. Evidence for a dual role of actin in regulating chromosome organization and dynamics in yeast. J Cell Sci. 2016;129(4):681–692.
  • Bas G, Loisate S, Hudon SF, et al. Low intensity vibrations augment mesenchymal stem cell proliferation and differentiation capacity during in vitro expansion. Sci Rep. 2020;10(1):9369.
  • Thompson WR, Rubin CT, Rubin J. Mechanical regulation of signaling pathways in bone. Gene. 2012;503(2):179–193.
  • Sen B, Paradise CR, Xie Z, et al. beta-catenin preserves the stem state of murine bone marrow stromal cells through activation of EZH2. J Bone Miner Res. 2020;35(6):1149–1162.
  • Uzer G, Bas G, Sen B, et al. Sun-mediated mechanical LINC between nucleus and cytoskeleton regulates betacatenin nuclear access. J Biomech. 2018;74:32–40.
  • Klymenko T, Bloehdorn J, Bahlo J, et al. Lamin B1 regulates somatic mutations and progression of B-cell malignancies. Leukemia. 2018;32(2):364–375.
  • McCrea PD, Gu D. The catenin family at a glance. J Cell Sci. 2010;123(5):637–642.
  • Yamada S, Pokutta S, Drees F, et al. Deconstructing the cadherin-catenin-actin complex. Cell. 2005;123(5):889901.
  • Drees F, Pokutta S, Yamada S, et al. Alpha-catenin is a molecular switch that binds E-cadherin-beta-catenin and regulates actin-filament assembly. Cell. 2005;123(5):903–915.
  • Sen B, Guilluy C, Xie Z, et al. Mechanically induced focal adhesion assembly amplifies anti-adipogenic pathways in mesenchymal stem cells. Stem Cells. 2011;29(11):1829–1836.
  • Dupont S, Morsut L, Aragona M, et al. Role of YAP/TAZ in mechanotransduction. Nature. 2011;474(7350):179–183.
  • Kofler M, Speight P, Little D, et al. Mediated nuclear import and export of TAZ and the underlying molecular requirements. Nat Commun. 2018;9(1):4966.
  • Elosegui-Artola A, Andreu I, Beedle AEM, et al. Force triggers YAP nuclear entry by regulating transport across nuclear pores. Cell. 2017;171(6):1397–1410. e14.
  • Thompson M, Woods, K., Newberg, J., Oxford, J.T. and Uzer, G. Low-intensity vibration restores nuclear YAP levels and acute YAP nuclear shuttling in mesenchymal stem cells subjected to simulated microgravity. NPJ Microgravity. 2020;6(1):35.
  • Meyer MB, Benkusky NA, Sen B, et al. Epigenetic plasticity drives adipogenic and osteogenic differentiation of marrow-derived mesenchymal stem cells. J Biol Chem. 2016;291(34):17829–17847.
  • Zaidi SK, Sullivan AJ, Medina R, et al. Tyrosine phosphorylation controls Runx2-mediated subnuclear targeting of YAP to repress transcription. EMBO J. 2004;23(4):790–799.
  • Ramdas NM, Shivashankar GV. Cytoskeletal control of nuclear morphology and chromatin organization. J Mol Biol. 2015;427(3):695–706.
  • Misteli T. Beyond the sequence: cellular organization of genome function. Cell. 2007;128(4):787–800.
  • Peric-Hupkes D, Meuleman W, Pagie L, et al. Molecular maps of the reorganization of genome-nuclear lamina interactions during differentiation. Mol Cell. 2010;38(4):603–613.
  • Udagawa K, Ohyama T. Positions of pluripotency genes and hepatocyte-specific genes in the nucleus before and after mouse ES cell differentiation. Genet Mol Res. 2014;13(1):1979–1988.
  • Caridi CP, D’Agostino C, Ryu T, et al. Nuclear F-actin and myosins drive relocalization of heterochromatic breaks. Nature. 2018;559(7712):54–60.
  • Capelson M. How genes move: spatial repositioning of activated genes is driven by nuclear actin-based pathway. Dev Cell. 2020;52(3):252–254.
  • Schrank BR, Aparicio T, Li Y, et al. Nuclear ARP2/3 drives DNA break clustering for homology-directed repair. Nature. 2018;559(7712):61–66.
  • Wang A, Kolhe JA, Gioacchini N, et al. Mechanism of long-range chromosome motion triggered by gene activation. Dev Cell. 2020;52(3):309–320 e5.
  • Guelen L, Pagie L, Brasset E, et al. Domain organization of human chromosomes revealed by mapping of nuclear lamina interactions. Nature. 2008;453(7197):948.
  • Akter R, Rivas D, Geneau G, et al. Effect of lamin A/C knockdown on osteoblast differentiation and function. J Bone Miner Res. 2009;24(2):283–293.
  • Constantinescu D, Gray HL, Sammak PJ, et al. Lamin A/C expression is a marker of mouse and human embryonic stem cell differentiation. Stem Cells. 2006;24(1):177–185.
  • Takahashi Y, Hiratsuka S, Machida N, et al. Impairment of nuclear F-actin formation and its relevance to cellular phenotypes in hutchinson-gilford progeria syndrome. Nucleus. 2020;11(1):250–263.
  • Parisis N, Krasinska L, Harker B, et al. Initiation of DNA replication requires actin dynamics and formin activity. EMBO J. 2017;36(21):3212–3231.
  • Mahmood SR, Xie X, Hosny El Said N, et al. beta-actin dependent chromatin remodeling mediates compartment level changes in 3D genome architecture. Nat Commun. 2021;12(1):5240.
  • Percipalle P. Co-transcriptional nuclear actin dynamics. Nucleus. 2013;4(1):43–52.
  • Serebryannyy LA, Parilla M, Annibale P, et al. Persistent nuclear actin filaments inhibit transcription by RNA polymerase II. J Cell Sci. 2016;129(18):3412–3425.
  • Xie X, Almuzzaini B, Drou N, et al. beta-Actin-dependent global chromatin organization and gene expression programs control cellular identity. FASEB J. 2018;32(3):1296–1314.
  • Dudakovic A, Camilleri ET, Xu F, et al. Epigenetic control of skeletal development by the histone methyltransferase Ezh2. J Biol Chem. 2015;290(46):27604–27617.
  • Dudakovic A, Camilleri ET, Paradise CR, et al. Enhancer of zeste homolog 2 (Ezh2) controls bone formation and cell cycle progression during osteogenesis in mice. J Biol Chem. 2018;293(33):12894–12907.
  • Samsonraj RM, Paradise CR, Dudakovic A, et al. Validation of osteogenic properties of cytochalasin d by high-resolution rna-sequencing in mesenchymal stem cells derived from bone marrow and adipose tissues. Stem Cells Dev. 2018;27(16):1136–1145.
  • Titelbaum M, Brant B, Baumel D, et al. Ezh2 harnesses the intranuclear actin cytoskeleton to remodel chromatin in differentiating Th cells. iScience. 2021;24(10):103093.