629
Views
0
CrossRef citations to date
0
Altmetric
Review

Long non-coding RNAs: roles in cellular stress responses and epigenetic mechanisms regulating chromatin

ORCID Icon & ORCID Icon
Article: 2350180 | Received 18 Jan 2024, Accepted 22 Apr 2024, Published online: 22 May 2024

References

  • Mattick JS, Amaral PP, Carninci P, et al. Long non-coding RNAs: definitions, functions, challenges and recommendations. Nat Rev Mol Cell Biol. 2023;24(6):430–25. doi: 10.1038/s41580-022-00566-8
  • Rinn JL, Chang HY. Long noncoding RNAs: molecular modalities to organismal functions. Annu Rev Biochem. 2020;89(1):283–308. doi: 10.1146/annurev-biochem-062917-012708
  • Nickerson JA. The ribonucleoprotein network of the nucleus: a historical perspective. Curr Opin Genet Dev. 2022;75:101940. doi: 10.1016/j.gde.2022.101940
  • Li Z, Liu L, Feng C, et al. LncBook 2.0: integrating human long non-coding RNAs with multi-omics annotations. Nucleic Acids Res. 2023;51(D1):D186–D191. doi: 10.1093/nar/gkac999
  • Abe R, Yagi Y, Tani H. Identifying long non-coding RNA as potential indicators of bacterial stressin human cells. BPB Reports. 2023;6(6):226–228. doi: 10.1248/bpbreports.6.6_226
  • Tao X, Xue F, Xu J, et al. Platelet-rich plasma-derived extracellular vesicles inhibit NF-kappaB/NLRP3 pathway-mediated pyroptosis in intervertebral disc degeneration via the MALAT1/microRNA-217/SIRT1 axis. Cell Signal. 2024;117:111106. doi: 10.1016/j.cellsig.2024.111106
  • Rajabi D, Khanmohammadi S, Rezaei N. The role of long noncoding RNAs in amyotrophic lateral sclerosis. Rev Neurosci. 2024;0(0). doi: 10.1515/revneuro-2023-0155
  • Liau WS, Zhao Q, Bademosi A, et al. Fear extinction is regulated by the activity of long noncoding RNAs at the synapse. Nat Commun. 2023;14(1):7616. doi: 10.1038/s41467-023-43535-1
  • Corrado C, Costa V, Giavaresi G, et al. Long non coding RNA H19: a new player in hypoxia-induced multiple myeloma cell dissemination. Int J Mol Sci. 2019;20(4):20. doi: 10.3390/ijms20040801
  • Hall JR, Messenger ZJ, Tam HW, et al. Long noncoding RNA lincRNA-p21 is the major mediator of UVB-induced and p53-dependent apoptosis in keratinocytes. Cell Death Dis. 2015;6(3):e1700. doi: 10.1038/cddis.2015.67
  • Liu L, Chen Y, Huang Y, et al. Long non-coding RNA ANRIL promotes homologous recombination-mediated DNA repair by maintaining ATR protein stability to enhance cancer resistance. Mol Cancer. 2021;20(1):94. doi: 10.1186/s12943-021-01382-y
  • Yao L, Peng P, Ding T, et al. m(6)A-Induced lncRNA MEG3 promotes cerebral ischemia-reperfusion injury via modulating oxidative stress and mitochondrial dysfunction by hnRNPa1/sirt2 axis. Mol Neurobiol. 2024. doi: 10.1007/s12035-024-04005-x
  • Lee S, Kopp F, Chang TC, et al. Noncoding RNA NORAD regulates genomic stability by sequestering PUMILIO proteins. Cell. 2016;164(1–2):69–80. doi: 10.1016/j.cell.2015.12.017
  • Xu W, Mo W, Han D, et al. Hepatocyte-derived exosomes deliver the lncRNA CYTOR to hepatic stellate cells and promote liver fibrosis. J Cell Mol Med. 2024;28(8):e18234. doi: 10.1111/jcmm.18234
  • Peng C, Hu W, Weng X, et al. Over expression of long non-coding RNA PANDA promotes hepatocellular carcinoma by inhibiting senescence associated inflammatory factor IL8. Sci Rep. 2017;7(1):4186. doi: 10.1038/s41598-017-04045-5
  • Han L, Yang L. Multidimensional mechanistic spectrum of long non-coding RNAs in heart development and disease. Front Cardiovasc Med. 2021;8:728746. doi: 10.3389/fcvm.2021.728746
  • Chen C, Lin X, Tang Y, et al. LncRNA Fendrr: involvement in the protective role of nucleolin against H(2)O(2) -induced injury in cardiomyocytes. Redox Rep. 2023;28(1):2168626. doi: 10.1080/13510002.2023.2168626
  • Atef MM, Shafik NM, Hafez YM, et al. The evolving role of long noncoding RNA HIF1A-AS2 in diabetic retinopathy: a cross-link axis between hypoxia, oxidative stress and angiogenesis via MAPK/VEGF-dependent pathway. Redox Rep. 2022;27(1):70–78. doi: 10.1080/13510002.2022.2050086
  • Li T, Xiao Y, Huang T. HIF‑1α‑induced upregulation of lncRNA UCA1 promotes cell growth in osteosarcoma by inactivating the PTEN/AKT signaling pathway. Oncol Rep. 2018;39(3):1072–1080. doi: 10.3892/or.2018.6182
  • Guo Z, Wang X, Yang Y, et al. Hypoxic tumor-derived exosomal long noncoding RNA UCA1 promotes angiogenesis via miR-96-5p/AMOTL2 in pancreatic cancer. Mol Ther Nucleic Acids. 2020;22:179–195. doi: 10.1016/j.omtn.2020.08.021
  • Chang H, Zou Z. Targeting autophagy to overcome drug resistance: further developments. J Hematol Oncol. 2020;13(1):159. doi: 10.1186/s13045-020-01000-2
  • Bettin N, Oss Pegorar C, Cusanelli E. The emerging roles of TERRA in telomere maintenance and genome stability. Cells. 2019;8(3):8. doi: 10.3390/cells8030246
  • Marin-Bejar O, Marchese FP, Athie A, et al. Pint lincRNA connects the p53 pathway with epigenetic silencing by the polycomb repressive complex 2. Genome Biol. 2013;14(9):R104. doi: 10.1186/gb-2013-14-9-r104
  • Schmitt AM, Chang HY. Long noncoding RNAs in cancer pathways. Cancer Cell. 2016;29(4):452–463. doi: 10.1016/j.ccell.2016.03.010
  • Mitra S, Muralidharan SV, Di Marco M, et al. Subcellular distribution of p53 by the p53-responsive lncRNA NBAT1 determines chemotherapeutic response in Neuroblastoma. Cancer Res. 2021;81(6):1457–1471. doi: 10.1158/0008-5472.CAN-19-3499
  • Statello L, Guo CJ, Chen LL, et al. Gene regulation by long non-coding RNAs and its biological functions. Nat Rev Mol Cell Biol. 2021;22(2):96–118. doi: 10.1038/s41580-020-00315-9
  • Olivero CE, Martinez-Terroba E, Zimmer J, et al. p53 activates the long noncoding RNA Pvt1b to inhibit myc and suppress tumorigenesis. J Reine und Angew Math. 2020;77(4):761–774 e768. doi: 10.1016/j.molcel.2019.12.014
  • Wang C, Yang Y, Zhang G, et al. Long noncoding RNA EMS connects c-myc to cell cycle control and tumorigenesis. Proc Natl Acad Sci USA. 2019;116(29):14620–14629. doi: 10.1073/pnas.1903432116
  • Clemson CM, Hutchinson JN, Sara SA, et al. An architectural role for a nuclear noncoding RNA: NEAT1 RNA is essential for the structure of paraspeckles. Mol Cell. 2009;33(6):717–726. doi: 10.1016/j.molcel.2009.01.026
  • Fox AH, Nakagawa S, Hirose T, et al. Paraspeckles: where long noncoding RNA meets phase separation. Trends Biochem Sci. 2018;43(2):124–135. doi: 10.1016/j.tibs.2017.12.001
  • Adriaens C, Standaert L, Barra J, et al. p53 induces formation of NEAT1 lncRNA-containing paraspeckles that modulate replication stress response and chemosensitivity. Nat Med. 2016;22(8):861–868. doi: 10.1038/nm.4135
  • Roy R, Chun J, Powell SN. BRCA1 and BRCA2: different roles in a common pathway of genome protection. Nat Rev Cancer. 2011;12(1):68–78. doi: 10.1038/nrc3181
  • Prensner JR, Chen W, Iyer MK, et al. PCAT-1, a long noncoding RNA, regulates BRCA2 and controls homologous recombination in cancer. Cancer Res. 2014;74(6):1651–1660. doi: 10.1158/0008-5472.CAN-13-3159
  • Ray Chaudhuri A, Nussenzweig A. The multifaceted roles of PARP1 in DNA repair and chromatin remodelling. Nat Rev Mol Cell Biol. 2017;18(10):610–621. doi: 10.1038/nrm.2017.53
  • Huang D, Kraus WL. The expanding universe of PARP1-mediated molecular and therapeutic mechanisms. Mol Cell. 2022;82(12):2315–2334. doi: 10.1016/j.molcel.2022.02.021
  • Guo Y, Liu Y, Wang H, et al. Long noncoding RNA SRY-box transcription factor 2 overlapping transcript participates in Parkinson’s disease by regulating the microRNA-942-5p/nuclear apoptosis-inducing factor 1 axis. Bioengineered. 2021;12(1):8570–8582. doi: 10.1080/21655979.2021.1987126
  • Jayasuriya R, Ramkumar KM. Role of long non-coding RNAs on the regulation of Nrf2 in chronic diseases. Life Sci. 2021;270:119025. doi: 10.1016/j.lfs.2021.119025
  • Han Y, Gao X, Wu N, et al. Long noncoding RNA LINC00239 inhibits ferroptosis in colorectal cancer by binding to Keap1 to stabilize Nrf2. Cell Death Dis. 2022;13(8):742. doi: 10.1038/s41419-022-05192-y
  • Xu Y, Zheng Y, Shen P, et al. Role of long noncoding RNA KCNQ1 overlapping transcript 1/microRNA-124-3p/BCL-2-like 11 axis in hydrogen peroxide (H2O2)-stimulated human lens epithelial cells. Bioengineered. 2022;13(3):5035–5045. doi: 10.1080/21655979.2022.2032966
  • West JA, Davis CP, Sunwoo H, et al. The long noncoding RNAs NEAT1 and MALAT1 bind active chromatin sites. Mol Cell. 2014;55(5):791–802. doi: 10.1016/j.molcel.2014.07.012
  • Kukharsky MS, Ninkina NN, An H, et al. Long non-coding RNA Neat1 regulates adaptive behavioural response to stress in mice. Transl Psychiatry. 2020;10(1):171. doi: 10.1038/s41398-020-0854-2
  • Zhou ZW, Ren X, Zheng LJ, et al. LncRNA NEAT1 ameliorate ischemic stroke via promoting Mfn2 expression through binding to nova and activates Sirt3. Metab Brain Dis. 2022;37(3):653–664. doi: 10.1007/s11011-021-00895-1
  • Bhagat R, Minaya MA, Renganathan A, et al. Long non-coding RNA SNHG8 drives stress granule formation in tauopathies. Mol Psychiatry. 2023;28(11):4889–4901. doi:10.1038/s41380-023-02237-2
  • Tian F, Yi J, Liu Y, et al. Integrating network pharmacology and bioinformatics to explore and experimentally verify the regulatory effect of Buyang Huanwu decoction on glycolysis and angiogenesis after cerebral infarction. J Ethnopharmacol. 2024;319:117218. doi: 10.1016/j.jep.2023.117218
  • Chen W, Ye Q, Dong Y. Long term exercise-derived exosomal LncRNA CRNDE mitigates myocardial infarction injury through miR-489-3p/Nrf2 signaling axis. Nanomedicine. 2024;55:102717. doi: 10.1016/j.nano.2023.102717
  • Zheng F, Chen J, Zhang X, et al. The HIF-1α antisense long non-coding RNA drives a positive feedback loop of HIF-1α mediated transactivation and glycolysis. Nat Commun. 2021;12(1):1341. doi: 10.1038/s41467-021-21535-3
  • Mineo M, Ricklefs F, Rooj AK, et al. The long non-coding RNA HIF1A-AS2 facilitates the maintenance of mesenchymal glioblastoma stem-like cells in hypoxic niches. Cell Rep. 2016;15(11):2500–2509. doi: 10.1016/j.celrep.2016.05.018
  • Zhu H, Jin YM, Lyu XM, et al. Retracted Article: long noncoding RNA H19 regulates HIF-1α/AXL signaling through inhibiting miR-20b-5p in endometrial cancer. Cell Cycle. 2019;18(19):2454–2464. doi: 10.1080/15384101.2019.1648958
  • Peng PH, Hsu KW, Chieh-Yu Lai J, et al. The role of hypoxia-induced long noncoding RNAs (lncRNAs) in tumorigenesis and metastasis. Biomed J. 2021;44(5):521–533. doi: 10.1016/j.bj.2021.03.005
  • Tee AE, Liu B, Song R, et al. The long noncoding RNA MALAT1 promotes tumor-driven angiogenesis by up-regulating pro-angiogenic gene expression. Oncotarget. 2016;7(8):8663–8675. doi: 10.18632/oncotarget.6675
  • Michalik KM, You X, Manavski Y, et al. Long noncoding RNA MALAT1 regulates endothelial cell function and vessel growth. Circ Res. 2014;114(9):1389–1397. doi: 10.1161/CIRCRESAHA.114.303265
  • Weng X, Liu H, Ruan J, et al. HOTAIR/miR-1277-5p/ZEB1 axis mediates hypoxia-induced oxaliplatin resistance via regulating epithelial-mesenchymal transition in colorectal cancer. Cell Death Discov. 2022;8(1):310. doi: 10.1038/s41420-022-01096-0
  • Zhang J, Hu C, Jiao X, et al. Potential role of mRnas and LncRNAs in chronic intermittent hypoxia exposure-aggravated atherosclerosis. Front Genet. 2020;11:290. doi: 10.3389/fgene.2020.00290
  • Brown CJ, Ballabio A, Rupert JL, et al. A gene from the region of the human X inactivation centre is expressed exclusively from the inactive X chromosome. Nature. 1991;349(6304):38–44. doi: 10.1038/349038a0
  • Pachnis V, Belayew A, Tilghman SM. Locus unlinked to alpha-fetoprotein under the control of the murine raf and Rif genes. Proc Natl Acad Sci USA. 1984;81(17):5523–5527. doi: 10.1073/pnas.81.17.5523
  • Brannan CI, Dees EC, Ingram RS, et al. The product of the H19 gene may function as an RNA. Mol Cell Biol. 1990;10(1):28–36. doi: 10.1128/MCB.10.1.28
  • Lander ES, Linton LM, Birren B, et al. Initial sequencing and analysis of the human genome. Nature. 2001;409(6822):860–921. doi: 10.1038/35057062
  • International Human Genome Sequencing C: finishing the euchromatic sequence of the human genome. Nature. 2004;431(7011):931–945. doi: 10.1038/nature03001
  • Venter JC, Adams MD, Myers EW, et al. The sequence of the human genome. Science. 2001;291(5507):1304–1351. doi: 10.1126/science.1058040
  • Iyer MK, Niknafs YS, Malik R, et al. The landscape of long noncoding RNAs in the human transcriptome. Nat Genet. 2015;47(3):199–208. doi: 10.1038/ng.3192
  • Hon CC, Ramilowski JA, Harshbarger J, et al. An atlas of human long non-coding RNAs with accurate 5 ends. Nature. 2017;543(7644):199–204. doi: 10.1038/nature21374
  • Frankish A, Carbonell-Sala S, Diekhans M, et al. GENCODE: reference annotation for the human and mouse genomes in 2023. Nucleic Acids Res. 2023;51(D1):D942–D949. doi: 10.1093/nar/gkac1071
  • Gilbert LA, Horlbeck MA, Adamson B, et al. Genome-scale CRISPR-Mediated control of gene repression and activation. Cell. 2014;159(3):647–661. doi: 10.1016/j.cell.2014.09.029
  • Boettcher M, MT M. Choosing the right tool for the job: RNAi, TALEN, or CRISPR. Mol Cell. 2015;58(4):575–585. doi: 10.1016/j.molcel.2015.04.028
  • Kornienko AE, Guenzl PM, Barlow DP, et al. Gene regulation by the act of long non-coding RNA transcription. BMC Biol. 2013;11(1):59. doi: 10.1186/1741-7007-11-59
  • Goyal A, Myacheva K, Gross M, et al. Challenges of CRISPR/Cas9 applications for long non-coding RNA genes. Nucleic Acids Res. 2017;45:e12. doi: 10.1093/nar/gkw883
  • Bester AC, Lee JD, Chavez A, et al. An integrated genome-wide CRISPRa approach to functionalize lncRNAs in drug resistance. Cell. 2018;173(3):649–664 e620. doi: 10.1016/j.cell.2018.03.052
  • Lowenberg B, Downing JR, Burnett A. Burnett A: acute myeloid leukemia. N Engl J Med. 1999;341(14):1051–1062. doi: 10.1056/NEJM199909303411407
  • Burnett A, Wetzler M, Lowenberg B. Therapeutic advances in acute myeloid leukemia. J Clin Oncol. 2011;29(5):487–494. doi: 10.1200/JCO.2010.30.1820
  • Liu SJ, Horlbeck MA, Cho SW, et al. Crispri-based genome-scale identification of functional long noncoding RNA loci in human cells. Science. 2017;355(6320):355. doi: 10.1126/science.aah7111
  • Cho SW, Xu J, Sun R, et al. Promoter of lncRNA gene PVT1 is a tumor-suppressor DNA boundary element. Cell. 2018;173:1398–1412 e1322.
  • Khalil AM, Guttman M, Huarte M, et al. Many human large intergenic noncoding RNAs associate with chromatin-modifying complexes and affect gene expression. Proc Natl Acad Sci U S A. 2009;106(28):11667–11672. doi: 10.1073/pnas.0904715106
  • Wang X, Goodrich KJ, Gooding AR, et al. Targeting of polycomb repressive complex 2 to RNA by short repeats of consecutive guanines. Mol Cell. 2017;65(6):1056–1067 e1055. doi: 10.1016/j.molcel.2017.02.003
  • Fawcett DW. An atlas of fine structure: the cell, its organelles and inclusions. Philadelphia: W. B. Saunders Co.; 1966.
  • Berezney R. Organization and functions of the nuclear matrix. In: LS H, editor. Chromosomal nonhistone proteins. Vol. IV. CRC Press; 1984. p. 119–180.
  • Bernhard W. A new staining procedure for electron microscopical cytology. J Ultrastruct Res. 1969;27(3–4):250–265. doi: 10.1016/S0022-5320(69)80016-X
  • Biggiogera M, Fakan S. Fine structural specific visualization of RNA on ultrathin sections. J Histochem Cytochem. 1998;46(3):389–395. doi: 10.1177/002215549804600313
  • Monneron A, Bernhard W. Fine structural organization of the interphase nucleus in some mammalian cells. J Ultrastruct Res. 1969;27(3–4):266–288. doi: 10.1016/S0022-5320(69)80017-1
  • Bachellerie JP, Puvion E, Zalta JP. Ultrastructural Organization and biochemical characterization of chromatin · RNA · protein complexes isolated from Mammalian Cell Nuclei. Eur J Biochem. 1975;58(2):327–337. doi: 10.1111/j.1432-1033.1975.tb02379.x
  • Mintz PJ, Patterson SD, Neuwald AF, et al. Purification and biochemical characterization of interchromatin granule clusters. Embo J. 1999;18(15):4308–4320. doi: 10.1093/emboj/18.15.4308
  • Shopland LS, Johnson CV, Byron M, et al. Clustering of multiple specific genes and gene-rich R-bands around SC-35 domains: evidence for local euchromatic neighborhoods. J Cell Bio. 2003;162(6):981–990. doi: 10.1083/jcb.200303131
  • Nickerson JA, Krockmalnic G, Wan KM, et al. The nuclear matrix revealed by eluting chromatin from a cross-linked nucleus. Proc Natl Acad Sci USA. 1997;94(9):4446–4450. doi: 10.1073/pnas.94.9.4446
  • Smetana K, Steele WJ, Busch H. A nuclear ribonucleoprotein network. Exp Cell Res. 1963;31(1):198–201. doi: 10.1016/0014-4827(63)90169-1
  • Herman RC, Penman S. Multiple decay rates of heterogeneous nuclear RNA in HeLa cells. Biochemistry. 1977;16(15):3460–3465. doi: 10.1021/bi00634a026
  • Herman R, Weymouth L, Penman S. Heterogeneous nuclear RNA-protein fibers in chromatin-depleted nuclei. J Cell Bio. 1978;78(3):663–674. doi: 10.1083/jcb.78.3.663
  • Pagoulatos GN, Darnell JE Jr. Fractionation of heterogeneous nuclear RNA: rates of hybridization and chromosomal distribution of reiterated sequences. J Mol Biol. 1970;54(3):517–535. doi: 10.1016/0022-2836(70)90123-3
  • Pagoulatos GN, Darnell JE. A comparison of the heterogeneous nuclear RNA of HeLa cells in different periods of the cell growth cycle. J Cell Bio. 1970;44(3):476–483. doi: 10.1083/jcb.44.3.476
  • Salditt-Georgieff M, Harpold MM, Wilson MC, et al. Large heterogeneous nuclear ribonucleic acid has three times as many 5’ caps as polyadenylic acid segments, and most caps do not enter polyribosomes. Mol Cell Biol. 1981;1(2):179–187. doi: 10.1128/MCB.1.2.179
  • Salditt-Georgieff M, Darnell JE Jr. Further evidence that the majority of primary nuclear RNA transcripts in mammalian cells do not contribute to mRNA. Mol Cell Biol. 1982;2(6):701–707. doi: 10.1128/mcb.2.6.701-707.1982
  • Bertone P, Stolc V, Royce TE, et al. Global identification of human transcribed sequences with genome tiling arrays. Science. 2004;306(5705):2242–2246. doi: 10.1126/science.1103388
  • Consortium EP, Birney E, Stamatoyannopoulos JA, et al. Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature. 2007;447:799–816.
  • Kapranov P, Cheng J, Dike S, et al. RNA maps reveal new RNA classes and a possible function for pervasive transcription. Science. 2007;316(5830):1484–1488. doi: 10.1126/science.1138341
  • Djebali S, Davis CA, Merkel A, et al. Landscape of transcription in human cells. Nature. 2012;489(7414):101–108. doi: 10.1038/nature11233
  • Carninci P, Kasukawa T, Katayama S, et al. The transcriptional landscape of the mammalian genome. Science. 2005;309(5740):1559–1563. doi: 10.1126/science.1112014
  • Samarina OP, Lukanidin EM, Molnar J, et al. Structural organization of nuclear complexes containing DNA-like RNA. J Mol Biol. 1968;33(1):251–263. doi: 10.1016/0022-2836(68)90292-1
  • Walker BW, Lothstein L, Baker CL, et al. The release of 40S hnRNP particles by brief digestion of HeLa nuclei with micrococcal nuclease. Nucleic Acids Res. 1980;8(16):3639–3657. doi: 10.1093/nar/8.16.3639
  • Narayan KS, Steele WJ, Smetana K, et al. Ultrastructural aspects of the ribonucleo-protein network in nuclei of walker tumor and rat liver. Exp Cell Res. 1967;46(1):65–77. doi: 10.1016/0014-4827(67)90409-0
  • van Venrooij WJ, Janssen DB. HnRNP particles. Mol Biol Rep. 1978;4(1):3–8. doi: 10.1007/BF00775172
  • Faiferman I, Pogo AO. Isolation of a nuclear ribonucleoprotein network that contains heterogeneous RNA and is bound to the nuclear envelope. Biochemistry. 1975;14(17):3808–3816. doi: 10.1021/bi00688a013
  • Capco DG, Wan KM, Penman S. The nuclear matrix: three-dimensional architecture and protein composition. Cell. 1982;29(3):847–858. doi: 10.1016/0092-8674(82)90446-9
  • Fey EG, Krochmalnic G, Penman S. The nonchromatin substructures of the nucleus: the ribonucleoprotein (RNP)-containing and RNP-depleted matrices analyzed by sequential fractionation and resinless section electron microscopy. J Cell Bio. 1986;102(5):1654–1665. doi: 10.1083/jcb.102.5.1654
  • Fey EG, Ornelles DA, Penman S. Association of RNA with the cytoskeleton and the nuclear matrix. J Cell Sci Suppl. 1986;5(Supplement_5):99–119. doi: 10.1242/jcs.1986.Supplement_5.6
  • Nickerson JA, Krochmalnic G, Wan KM, et al. Chromatin architecture and nuclear RNA. Proc Natl Acad Sci USA. 1989;86(1):177–181. doi: 10.1073/pnas.86.1.177
  • Guttman M, Amit I, Garber M, et al. Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. Nature. 2009;458(7235):223–227. doi: 10.1038/nature07672
  • Misteli T. The self-organizing genome: principles of genome architecture and function. Cell. 2020;183(1):28–45. doi: 10.1016/j.cell.2020.09.014
  • van Steensel B, Belmont AS. Lamina-Associated Domains: links with chromosome architecture, Heterochromatin, and gene repression. Cell. 2017;169(5):780–791. doi: 10.1016/j.cell.2017.04.022
  • Briand N, Collas P. Lamina-associated domains: peripheral matters and internal affairs. Genome Biol. 2020;21(1):85. doi: 10.1186/s13059-020-02003-5
  • Tchurikov NA, Kravatsky YV. The role of rDNA clusters in global epigenetic gene regulation. Front Genet. 2021;12:730633. doi: 10.3389/fgene.2021.730633
  • Cremer T, Cremer M. Chromosome territories. Cold Spring Harb Perspect Biol. 2010;2(3):a003889. doi: 10.1101/cshperspect.a003889
  • Stack SM, Brown DB, Dewey WC. Visualization of interphase chromosomes. J Cell Sci. 1977;26(1):281–299. doi: 10.1242/jcs.26.1.281
  • Fritz AJ, Sehgal N, Pliss A, et al. Chromosome territories and the global regulation of the genome. Genes Chromosomes Cancer. 2019;58(7):407–426. doi: 10.1002/gcc.22732
  • Lieberman-Aiden E, van Berkum NL, Williams L, et al. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science. 2009;326(5950):289–293. doi: 10.1126/science.1181369
  • Quinodoz SA, Ollikainen N, Tabak B, et al. Higher-order inter-chromosomal hubs shape 3D genome organization in the nucleus. Cell. 2018;174(3):744–757 e724. doi: 10.1016/j.cell.2018.05.024
  • Dekker J, Heard E. Structural and functional diversity of topologically associating domains. FEBS Lett. 2015;589(20PartA):2877–2884. doi: 10.1016/j.febslet.2015.08.044
  • Barutcu AR, Blencowe BJ, Rinn JL. Differential contribution of steady-state RNA and active transcription in chromatin organization. EMBO Rep. 2019;20(10):e48068. doi: 10.15252/embr.201948068
  • Cook PR, Brazell IA, Jost E. Characterization of nuclear structures containing superhelical DNA. J Cell Sci. 1976;22(2):303–324. doi: 10.1242/jcs.22.2.303
  • Benyajati C, Worcel A. Isolation, characterization, and structure of the folded interphase genome of drosophila melanogaster. Cell. 1976;9(3):393–407. doi: 10.1016/0092-8674(76)90084-2
  • Vogelstein B, Pardoll DM, Coffey DS. Supercoiled loops and eucaryotic DNA replicaton. Cell. 1980;22(1):79–85. doi: 10.1016/0092-8674(80)90156-7
  • Pardoll DM, Vogelstein B, Coffey DS. A fixed site of DNA replication in eucaryotic cells. Cell. 1980;19(2):527–536. doi: 10.1016/0092-8674(80)90527-9
  • Leonhardt H, Rahn HP, Weinzierl P, et al. Dynamics of DNA replication factories in living cells. J Cell Bio. 2000;149(2):271–280. doi: 10.1083/jcb.149.2.271
  • Cook PR. The organization of replication and transcription. Science. 1999;284(5421):1790–1795. doi: 10.1126/science.284.5421.1790
  • Jackson DA, Iborra FJ, Manders EM, et al. Numbers and organization of RNA polymerases, nascent transcripts, and transcription units in HeLa nuclei [published erratum appears. Mol Biol Cell. 1998;9(9):1523–1536. doi: 10.1091/mbc.9.6.1523
  • Davidson EH, Britten RJ. Regulation of gene expression: possible role of repetitive sequences. Science. 1979;204(4397):1052–1059. doi: 10.1126/science.451548
  • Hall LL, Lawrence JB. RNA as a fundamental component of interphase chromosomes: could repeats prove key? Curr Opin Genet Dev. 2016;37:137–147. doi: 10.1016/j.gde.2016.04.005
  • Britten RJ, Graham DE, Neufeld BR. Analysis of repeating DNA sequences by reassociation. Methods Enzymol. 1974;29:363–418.
  • Clemson CM, Hall LL, Byron M, et al. The X chromosome is organized into a gene-rich outer rim and an internal core containing silenced nongenic sequences. Proc Natl Acad Sci USA. 2006;103(20):7688–7693. doi: 10.1073/pnas.0601069103
  • Hall LL, Carone DM, Gomez AV, et al. Stable C0T-1 repeat RNA is abundant and is associated with euchromatic interphase chromosomes. Cell. 2014;156(5):907–919. doi: 10.1016/j.cell.2014.01.042
  • Creamer KM, Kolpa HJ, Lawrence JB. Nascent RNA scaffolds contribute to chromosome territory architecture and counter chromatin compaction. Mol Cell. 2021;81(17):3509–3525 e3505. doi: 10.1016/j.molcel.2021.07.004
  • Braunschweig U, Barbosa-Morais NL, Pan Q, et al. Widespread intron retention in mammals functionally tunes transcriptomes. Genome Res. 2014;24(11):1774–1786. doi: 10.1101/gr.177790.114
  • Boutz PL, Bhutkar A, Sharp PA. Detained introns are a novel, widespread class of post-transcriptionally spliced introns. Genes Dev. 2015;29(1):63–80. doi: 10.1101/gad.247361.114
  • Dumbovic G, Braunschweig U, Langner HK, et al. Nuclear compartmentalization of TERT mRNA and TUG1 lncRNA is driven by intron retention. Nat Commun. 2021;12(1):3308. doi: 10.1038/s41467-021-23221-w
  • Barutcu AR, Wu M, Braunschweig U, et al. Systematic mapping of nuclear domain-associated transcripts reveals speckles and lamina as hubs of functionally distinct retained introns. Mol Cell. 2022;82(5):1035–1052 e1039. doi: 10.1016/j.molcel.2021.12.010
  • Quinodoz SA, Jachowicz JW, Bhat P, et al. RNA promotes the formation of spatial compartments in the nucleus. Cell. 2021;184(23):5775–5790 e5730. doi: 10.1016/j.cell.2021.10.014
  • Hutchinson JN, Ensminger AW, Clemson CM, et al. Chess A: a screen for nuclear transcripts identifies two linked noncoding RNAs associated with SC35 splicing domains. BMC Genomics. 2007;8(1):39. doi: 10.1186/1471-2164-8-39
  • Bunch H, Lawney BP, Burkholder A, et al. RNA polymerase II promoter-proximal pausing in mammalian long non-coding genes. Genomics. 2016;108(2):64–77. doi: 10.1016/j.ygeno.2016.07.003
  • Drolet M, Phoenix P, Menzel R, et al. Overexpression of RNase H partially complements the growth defect of an Escherichia coli delta topA mutant: R-loop formation is a major problem in the absence of DNA topoisomerase I. Proc Natl Acad Sci USA. 1995;92(8):3526–3530. doi: 10.1073/pnas.92.8.3526
  • Thomas M, White RL, Davis RW. Hybridization of RNA to double-stranded DNA: formation of R-loops. Proc Natl Acad Sci USA. 1976;73(7):2294–2298. doi: 10.1073/pnas.73.7.2294
  • Skourti-Stathaki K, Proudfoot NJ. A double-edged sword: R loops as threats to genome integrity and powerful regulators of gene expression. Genes Dev. 2014;28(13):1384–1396. doi: 10.1101/gad.242990.114
  • Chedin F. Nascent connections: R-Loops and Chromatin Patterning. Trends Genet. 2016;32(12):828–838. doi: 10.1016/j.tig.2016.10.002
  • Sanz LA, Hartono SR, Lim YW, et al. Prevalent, dynamic, and conserved R-Loop structures associate with specific epigenomic signatures in mammals. Mol Cell. 2016;63(1):167–178. doi: 10.1016/j.molcel.2016.05.032
  • Dumelie JG, Jaffrey SR. Defining the location of promoter-associated R-loops at near-nucleotide resolution using bisDRIP-seq. Elife. 2017;6:6. doi: 10.7554/eLife.28306
  • Ariel F, Lucero L, Christ A, et al. R-Loop mediated trans action of the APOLO long noncoding RNA. Mol Cell. 2020;77(5):1055–1065 e1054. doi: 10.1016/j.molcel.2019.12.015
  • Luo H, Zhu G, Eshelman MA, et al. HOTTIP-dependent R-loop formation regulates CTCF boundary activity and TAD integrity in leukemia. Mol Cell. 2022;82(4):833–851 e811. doi: 10.1016/j.molcel.2022.01.014
  • Sanborn AL, Rao SS, Huang SC, et al. Chromatin extrusion explains key features of loop and domain formation in wild-type and engineered genomes. Proc Natl Acad Sci U S A. 2015;112(47):E6456–6465. doi: 10.1073/pnas.1518552112
  • Fudenberg G, Imakaev M, Lu C, et al. Formation of chromosomal domains by loop extrusion. Cell Rep. 2016;15(9):2038–2049. doi: 10.1016/j.celrep.2016.04.085
  • Beyer AL, Christensen ME, Walker BW, et al. Identification and characterization of the packaging proteins of core 40S hnRNP particles. Cell. 1977;11(1):127–138. doi: 10.1016/0092-8674(77)90323-3
  • Dreyfuss G, Matunis MJ, Pinol-Roma S, et al. hnRNP proteins and the biogenesis of mRNA. Annu Rev Biochem. 1993;62(1):289–321. doi: 10.1146/annurev.bi.62.070193.001445
  • Hudson WH, Ortlund EA. The structure, function and evolution of proteins that bind DNA and RNA. Nat Rev Mol Cell Biol. 2014;15(11):749–760. doi: 10.1038/nrm3884
  • Kolpa HJ, Creamer KM, Hall LL, et al. SAF-A mutants disrupt chromatin structure through dominant negative effects on RNAs associated with chromatin. Mamm Genome. 2021;33(2):366–381. doi: 10.1007/s00335-021-09935-8
  • Fackelmayer FO, Dahm K, Renz A, et al. Nucleic-acid-binding properties of hnRNP-U/SAF-A, a nuclear-matrix protein which binds DNA and RNA in vivo and in vitro. Eur J Biochem. 1994;221(2):749–757. doi: 10.1111/j.1432-1033.1994.tb18788.x
  • Nozawa RS, Boteva L, Soares DC, et al. SAF-A regulates interphase chromosome structure through oligomerization with chromatin-associated RNAs. Cell. 2017;169(7):1214–1227 e1218. doi: 10.1016/j.cell.2017.05.029
  • GH D, Kelley DR, Tenen D, et al. Widespread RNA binding by chromatin-associated proteins. Genome Biol. 2016;17(1):28. doi: 10.1186/s13059-016-0878-3
  • Weinberg RA, Penman S. Small molecular weight monodisperse nuclear RNA. J Mol Biol. 1968;38(3):289–304. doi: 10.1016/0022-2836(68)90387-2
  • Rogers J, Wall R. A mechanism for RNA splicing. Proc Natl Acad Sci USA. 1980;77(4):1877–1879. doi: 10.1073/pnas.77.4.1877
  • Mount SM, Pettersson I, Hinterberger M, et al. The U1 small nuclear RNA-protein complex selectively binds a 5 splice site in vitro. Cell. 1983;33(2):509–518. doi: 10.1016/0092-8674(83)90432-4
  • Setyono B, Pederson T. Ribonucleoprotein organization of eukaryotic RNA. XXX. Evidence that U1 small nuclear RNA is a ribonucleoprotein when base-paired with pre-messenger RNA in vivo. J Mol Biol. 1984;174(2):285–295. doi: 10.1016/0022-2836(84)90339-5
  • Horowitz DS, Krainer AR. Mechanisms for selecting 5 splice sites in mammalian pre-mRNA splicing. Trends Genet. 1994;10(3):100–106. doi: 10.1016/0168-9525(94)90233-X
  • Sun H, Chasin LA. Multiple splicing defects in an intronic false exon. Mol Cell Biol. 2000;20(17):6414–6425. doi: 10.1128/MCB.20.17.6414-6425.2000
  • Jobert L, Pinzon N, Van Herreweghe E, et al. Human U1 snRNA forms a new chromatin-associated snRNP with TAF15. EMBO Rep. 2009;10(5):494–500. doi: 10.1038/embor.2009.24
  • Yin Y, Lu JY, Zhang X, et al. U1 snRNP regulates chromatin retention of noncoding RNAs. Nature. 2020;580(7801):147–150. doi: 10.1038/s41586-020-2105-3
  • Huang S, Spector DL. U1 and U2 small nuclear RNAs are present in nuclear speckles. Proc Natl Acad Sci USA. 1992;89(1):305–308. doi: 10.1073/pnas.89.1.305
  • Van Treeck B, Parker R. Emerging roles for intermolecular RNA-RNA interactions in RNP assemblies. Cell. 2018;174(4):791–802. doi: 10.1016/j.cell.2018.07.023
  • Fedoroff N, Wellauer PK, Wall R. Intermolecular duplexes in heterogeneous nuclear RNA from HeLa cells. Cell. 1977;10(4):597–610. doi: 10.1016/0092-8674(77)90092-7
  • Sommerville J, Scheer U. Transcription of complementary repeat sequences in amphibian oocytes. Chromosoma. 1982;86(1):95–113. doi: 10.1007/BF00330732
  • Singh G, Kucukural A, Cenik C, et al. The cellular EJC interactome reveals higher-order mRNP structure and an EJC-SR Protein Nexus. Cell. 2012;151(4):750–764. doi: 10.1016/j.cell.2012.10.007
  • Gerstberger S, Hafner M, Tuschl T. A census of human RNA-binding proteins. Nat Rev Genet. 2014;15(12):829–845. doi: 10.1038/nrg3813
  • van der Lee R, Buljan M, Lang B, et al. Classification of intrinsically disordered regions and proteins. Chem Rev. 2014;114(13):6589–6631. doi: 10.1021/cr400525m
  • Chong S, Mir M. Towards decoding the Sequence-based grammar governing the functions of intrinsically disordered protein regions. J Mol Biol. 2021;433(12):166724. doi: 10.1016/j.jmb.2020.11.023
  • Kato M, Han TW, Xie S, et al. Cell-free formation of RNA granules: low complexity sequence domains form dynamic fibers within hydrogels. Cell. 2012;149(4):753–767. doi: 10.1016/j.cell.2012.04.017
  • Kato M, SL M. The low-complexity domain of the FUS RNA binding protein self-assembles via the mutually exclusive use of two distinct cross-β cores. Proc Natl Acad Sci USA. 2021;118(42):118. doi: 10.1073/pnas.2114412118
  • Xiao R, Tang P, Yang B, et al. Nuclear matrix factor hnRNP U/SAF-A exerts a global control of alternative splicing by regulating U2 snRNP maturation. Mol Cell. 2012;45(5):656–668. doi: 10.1016/j.molcel.2012.01.009
  • Shin Y, Brangwynne CP. Liquid phase condensation in cell physiology and disease. Science. 2017;357(6357):357. doi: 10.1126/science.aaf4382
  • WK C, JH S, Hecht M, et al. Cisse II: Mediator and RNA polymerase II clusters associate in transcription-dependent condensates. Science. 2018;361(6400):412–415. doi: 10.1126/science.aar4199
  • Guo YE, Manteiga JC, Henninger JE, et al. Pol II phosphorylation regulates a switch between transcriptional and splicing condensates. Nature. 2019;572(7770):543–548. doi: 10.1038/s41586-019-1464-0
  • Larson AG, Elnatan D, Keenen MM, et al. Liquid droplet formation by HP1α suggests a role for phase separation in heterochromatin. Nature. 2017;547(7662):236–240. doi: 10.1038/nature22822
  • Lin YC, Kumar MS, Ramesh N, et al. Interactions between ALS-linked FUS and nucleoporins are associated with defects in the nucleocytoplasmic transport pathway. Nat Neurosci. 2021;24(8):1077–1088. doi: 10.1038/s41593-021-00859-9
  • Boczek EE, Fursch J, Niedermeier ML, et al. HspB8 prevents aberrant phase transitions of FUS by chaperoning its folded RNA binding domain. Elife. 2021;10:10. doi: 10.7554/eLife.69377
  • Molliex A, Temirov J, Lee J, et al. Phase separation by low complexity domains promotes stress granule assembly and drives pathological fibrillization. Cell. 2015;163(1):123–133. doi: 10.1016/j.cell.2015.09.015
  • Bose M, Lampe M, Mahamid J, et al. Liquid-to-solid phase transition of oskar ribonucleoprotein granules is essential for their function in drosophila embryonic development. Cell. 2022;185(8):1308–1324.e23. doi: 10.1016/j.cell.2022.02.022
  • Cancer Genome Atlas Network. Comprehensive molecular portraits of human breast tumours. Nature. 2012;490(7418):61–70. doi: 10.1038/nature11412
  • He DC, Nickerson JA, Penman S. Core filaments of the nuclear matrix. J Cell Bio. 1990;110(3):569–580. doi: 10.1083/jcb.110.3.569
  • Jackson DA, Cook PR. Visualization of a filamentous nucleoskeleton with a 23 nm axial repeat. Embo J. 1988;7(12):3667–3677. doi: 10.1002/j.1460-2075.1988.tb03248.x
  • Tamashunas AC, Tocco VJ, Matthews J, et al. High-throughput gene screen reveals modulators of nuclear shape. Mol Biol Cell. 2020;31(13):1392–1402. doi: 10.1091/mbc.E19-09-0520
  • Sparmann A, Vogel J. RNA-based medicine: from molecular mechanisms to therapy. Embo J. 2023;42(21):e114760. doi: 10.15252/embj.2023114760
  • Zhu Y, Zhu L, Wang X, et al. RNA-based therapeutics: an overview and prospectus. Cell Death Dis. 2022;13(7):644. doi: 10.1038/s41419-022-05075-2
  • Sparber P, Filatova A, Khantemirova M, et al. The role of long non-coding RNAs in the pathogenesis of hereditary diseases. BMC Med Genomics. 2019;12(S2):42. doi: 10.1186/s12920-019-0487-6
  • DiStefano JK. The emerging role of long noncoding RNAs in human disease. Methods Mol Biol. 2018;1706:91–110.
  • Aznaourova M, Schmerer N, Schmeck B, et al. Disease-causing mutations and rearrangements in long non-coding RNA gene loci. Front Genet. 2020;11:527484. doi: 10.3389/fgene.2020.527484
  • Wang S, Qiao J, Feng S. Prediction of lncRNA and disease associations based on residual graph convolutional networks with attention mechanism. Sci Rep. 2024;14(1):5185. doi: 10.1038/s41598-024-55957-y
  • Lu C, Yang M, Luo F, et al. Prediction of lncRNA-disease associations based on inductive matrix completion. Bioinformatics. 2018;34:3357–3364. doi: 10.1093/bioinformatics/bty327
  • Khorkova O, Stahl J, Joji A, et al. Long non-coding RNA-targeting therapeutics: discovery and development update. Expert Opin Drug Discov. 2023;18(9):1011–1029. doi: 10.1080/17460441.2023.2236552
  • Winkle M, SM E-D, Fabbri M, et al. Noncoding RNA therapeutics — challenges and potential solutions. Nat Rev Drug Discov. 2021;20(8):629–651. doi: 10.1038/s41573-021-00219-z
  • Lennox KA, Behlke MA. Cellular localization of long non-coding RNAs affects silencing by RNAi more than by antisense oligonucleotides. Nucleic Acids Res. 2016;44(2):863–877. doi: 10.1093/nar/gkv1206
  • Arun G, Aggarwal D, Spector DL. MALAT1 long non-coding RNA: functional implications. Noncoding RNA. 2020;6(2):6. doi: 10.3390/ncrna6020022
  • Zhang B, Arun G, Mao YS, et al. The lncRNA Malat1 is dispensable for mouse development but its transcription plays a cis-regulatory role in the adult. Cell Rep. 2012;2(1):111–123. doi: 10.1016/j.celrep.2012.06.003
  • Nakagawa S, Ip JY, Shioi G, et al. Malat1 is not an essential component of nuclear speckles in mice. RNA. 2012;18(8):1487–1499. doi: 10.1261/rna.033217.112
  • Eissmann M, Gutschner T, Hammerle M, et al. Loss of the abundant nuclear non-coding RNA MALAT1 is compatible with life and development. RNA Biol. 2012;9(8):1076–1087. doi: 10.4161/rna.21089
  • Ji P, Diederichs S, Wang W, et al. MALAT-1, a novel noncoding RNA, and thymosin β4 predict metastasis and survival in early-stage non-small cell lung cancer. Oncogene. 2003;22(39):8031–8041. doi: 10.1038/sj.onc.1206928
  • Wilusz JE, Freier SM, Spector DL. 3 end processing of a long nuclear-retained Noncoding RNA yields a tRNA-like cytoplasmic RNA. Cell. 2008;135(5):919–932. doi: 10.1016/j.cell.2008.10.012
  • Arun G, Diermeier S, Akerman M, et al. Differentiation of mammary tumors and reduction in metastasis upon Malat1 lncRNA loss. Genes Dev. 2016;30(1):34–51. doi: 10.1101/gad.270959.115
  • Crick FH. On protein synthesis. Symp Soc Exp Biol. 1958;12:138–163.
  • Nirenberg M, Leder P. RNA codewords and protein synthesis. The effect of trinucleotides upon the binding of srna to ribosomes. Science. 1964;145(3639):1399–1407. doi: 10.1126/science.145.3639.1399
  • Morgan AR, Wells RD, Khorana HG. Studies on polynucleotides, lix. Further codon assignments from amino acid incorporations directed by ribopolynucleotides containing repeating trinucleotide sequences. Proc Natl Acad Sci USA. 1966;56(6):1899–1906. doi: 10.1073/pnas.56.6.1899
  • Havlin S, Buldyrev SV, Goldberger AL, et al. Statistical and linguistic features of DNA sequences. Fractals. 1995;3(2):269–284. doi: 10.1142/S0218348X95000229
  • Fabbri M, Girnita L, Varani G, et al. Decrypting noncoding RNA interactions, structures, and functional networks. Genome Res. 2019;29(9):1377–1388. doi: 10.1101/gr.247239.118
  • Guttman M, Rinn JL. Modular regulatory principles of large non-coding RNAs. Nature. 2012;482(7385):339–346. doi: 10.1038/nature10887
  • Lin A, Hu Q, Li C, et al. The LINK-A lncRNA interacts with PtdIns(3,4,5)P3 to hyperactivate AKT and confer resistance to AKT inhibitors. Nat Cell Biol. 2017;19(3):238–251. doi: 10.1038/ncb3473
  • Duan N, Arroyo M, Deng W, et al. Visualization and characterization of RNA–protein interactions in living cells. Nucleic Acids Res. 2021;49(18):e107. doi: 10.1093/nar/gkab614