884
Views
30
CrossRef citations to date
0
Altmetric
Articles

Simulation of seismic liquefaction: 1-g model testing system and shaking table tests

Pages 899-919 | Received 05 Oct 2012, Accepted 02 Aug 2013, Published online: 02 Sep 2013

References

  • Abdoun, T., Dobry, R., O’Rourke, T. D., & Goh, S. H. (2003). Pile response to lateral spreads: Centrifuge modeling. Journal of Geotechnical and Geoenvironmental Engineering, 129, 869–878.
  • Arulanandan, K., & Scott, R. F. (1993). Verification of numerical procedures for the analysis of soil liquefaction problems. Proceedings of the International Conference on the verification of numerical procedures for the analysis of soil liquefaction problems, Davis, California, USA.
  • ASTM. Designation D3441 – Standard test method for deep quasi-static, cone, and friction cone penetration tests of soil. In soil and rock: Building Stones. Annual Book of ASTM Standards, American Society for Testing and Materials, vol. 4.08, 1993.
  • Beaty, M. H., & Byrne, P. M. (1998). An effective stress model for predicting liquefaction behaviour of sand. Proceedings of Specialty Conf., Geotechnical Earthquake Eng. and Soil Dynamics III, vol. 1, ASCE GSP no. 75, pp. 766–777.
  • Beaty, M. H., & Byrne, P. M. (2011). UBCSAND constitutive model version 904aR, Documentation report. Retrieved from UBCSAND constitutive model on Itasca UDM website. http://www.itascaudm.com/media/download/UBCSand/UBCSAND_UDM_Documentation.pdf
  • Byrne, P. M., Park, S., Beaty, M. H., Sharp, M., Gonzales, L., & Abdoun, T. (2004). Numerical modelling of liquefaction and comparison with centrifuge tests. Canadian Geotechnical Journal, 41, 193–211.
  • Brandenberg, S. J., Boulanger, R. W., Kutter, B. L., & Chang, D. (2005). Behaviour of pile foundations in laterally spreading ground during centrifuge tests. Journal of Geotechnical and Geoenvironmental Engineering, 131, 1378–1391.
  • >Dobry, R., Taboada, V., & Liu, L. (1995). Centrifuge modelling of liquefaction effects during earthquakes. Proceedings of the First International Conference on Earthq. Geotech. Eng. (ISTokyo), Keynote Lecture, Tokyo, Japan, A. A. Balkema, Rotterdam/Brookfield, 1291–1324.
  • Elgamal, A., & Zeghal, M. (1992). Analysis of wildlife site liquefaction during the 1987 superstition hills earthquake (Rep. No. NCEER-92-O019). Proc. 4th U.S. Japan Workshop on Earthquake Resistant Des. of Lifeline Fac. and Countermeasures against Soil Liquefaction. In M. Hamada & T. O’Rourke (Eds.), National Center for Earthquake Engineering Research (pp. 87–96). Buffalo, NY: SUNY at Buffalo.
  • Elgamal, A., Zeghal, M., Taboada, V., & Dobry, R. (1996). Analysis of site liquefaction and lateral spreading using centrifuge testing records. Soils and Foundations, 36, 111–121.
  • Fiegel G. L., Hudson M., Idriss I. M., Kutter B. L., & Zeng X. (1994). Effect of model container on dynamic soil response. In C. F. Leung, F.-H. Lee, & T. S. Tan (Eds.), Centrifuge 94 (pp. 145–150). Singapore: Balkema.
  • Haigh S. K., & Madabhushi, S. P. G. (2005). The effect of pile flexibility on pile-loading in lateral spreading slopes. Geotechnical Special Publications, 145. In R. W. Boulanger & K. Tokimatsu (Eds.), 2005, pp. 24–37.
  • Hamada, M., Yasuda, S., Isoyama, R., & Emoto, K. (1986). Study on liquefaction induced permanent ground displacements. Japan: Research Report, Assn. for Development of Earthquake Prediction.
  • He, L., Elgamal, A., Abdoun, T., Abe, A., Dobry, R., Meneses, J., … Tokimatsu, K. (2006). Lateral load on piles due to liquefaction-induced lateral spreading during 1g shake table experiments. Proceedings of the Eighth US National Conference on Earthquake Eng., no. 881, San Francisco, EERI, Oakland, CA.
  • Ishihara, K., & Yoshimine, M. (1996). Evaluation of settlements in sands following liquefaction during earthquakes. Soils Foundation, 32, 173–188.
  • Itasca Consulting Group (1986). FLAC, fast lagrangian analysis of continua, version 6.0. Minneapolis, MN: Itasca Consulting Group.
  • Jafarzadeh, F. (2004). Design and evaluation concepts of laminar shear box for 1g shaking table tests. 13th World Conference on Earthquake Eng., Vancouver, BC, Canada, p. 1391.
  • Koloski, J. W., Schwarz, S. D., & Tubbs, D. W. (1989). Geotechnical properties of geologic materials. Washington Division of Geology and Earth Resources, Bulletin, 78, 19–26.
  • Lunne, T., Robertson, P. K., & Powell, J. J. M. (1997). Cone penetration testing in geotechnical practice. New York, NY: Blackie Academic, FF Spon/Routledge . p. 312.
  • McManus, K. J., Turner, J. P., & Charton, G. (2005). Inclined reinforcement to prevent soil liquefaction. Proceedings, Technical Conf., New Zealand Society for Earthquake Engineering, Wairakei, New Zealand, pp. 41–51.
  • Mesri, G., Feng, T. W., & Benak, J. M. (1990). Post-densification penetration resistance of clean sands. Journal of Geotechnical Engineering, 116, 1095–1115.
  • Mitchell, J. E. (1998). Densification and improvement of hydraulic fills. Proc., Specialty Conf. on Hydraulc Fill Structures, ASCE GSP No. 21. In D. G. A. Van Zyl & S. G. Vick, (Eds.). ASCE, New York, pp. 606–633.
  • Oda, M., Kawamoto, K., Fujimori, H., & Sato, M. (2001). Microstructural interpretation on reliquefaction of saturated granular soils under cyclic loading. Journal of Geotechnical and Geoenvironmental Engineering, 127, 416–423.
  • Puebla, H., Byrne, P. M., & Phillips, R. (1997). Analysis of CANLEX liquefaction embankments: Prototype and centrifuge models. Canadian Geotechnical Journal, 34, 641–657.
  • Poulos, S. J., & Hed, A. (1973). Density measurements in a hydraulic fill. Evaluation of Relative Density and its Role in Geotechnical Projects Involving Cohesionless Soils, ASTM STP 523. In E. T. Selig & R. S. Ladd, (Eds.), ASTM, West Conshohocken, PA, pp. 402–424.
  • Seed, H. B., & Idriss, I. M. (1971). A simplified procedure for evaluating soil liquefaction potential. Journal of Soil Mechanics Found Division, ASCE, 97(SM9), 1249–1273.
  • Seed, H. B., Wong, R. T., Idriss, I. M., & Tokimatsu, K. (1986). Moduli and damping factors for dynamic analyses of cohesionless soils. Journal of Geotechnical Engineering, ASCE, 112, 1016–1032.
  • Skempton, A. W. (1986). Standard penetration test procedures and the effects in sands of overburden pressure, relative density, particle size, ageing and overconsolidation. Geotechnique, 36, 425–447.
  • Suzuki, H., Tokimatsu, K., Sato, M., & Abe, A. (2005). Factor affecting horizontal subgrade reaction of piles during soil liquefaction and lateral spreading. In R. Boulanger & K. Tokimatsu, (Eds.), Seismic performance and simulation of pile foundations in liquefied and laterally spreading ground (pp. 1–10). Geotechnical Special Publications No. 145.
  • Tamura, S., & Tokimatsu, K. (2005). Seismic earth pressure acting on embedded footing based on large-scale shaking table tests. Geotechnical Special Publications, 145. In R. W. Boulanger & K. Tokimatsu, (Eds.), 2005, pp. 83–96.
  • Thevanayagam, S., Kanagalingam, T., Reinhorn, A., Tharmendhira, R., Dobry, R., Pitman, M., … El Shamy, U. (2009). Laminar box system for 1-g physical modelling of liquefaction and lateral spreading. Journal of ASTM Geotechnical Testing, 32, 438–449.
  • Tokimatsu, K., & Seed, H. B. (1987). Evaluation of settlements in sands due to earthquake shaking. Journal of Geotechnical Engineering, 113, 861–878.
  • Towhata, I., Sesov, V., Motamed, R., & Gonzalez, M. (2006). Model tests on lateral earth pressure on large group pile exerted by horizontal displacement of liquefied sandy ground. Proceedings of the Eighth US National Conference on Earthq. Eng., no.1227, San Francisco, CA, EERI, Oakland, CA.
  • O’Rourke T. D., & Hamada, M. (1992). Case studies of liquefaction and lifeline performance during past earthquakes. United States Case Studies. Tech. Report, vol. 2, no: NCEER-92-0002, NCEER, SUNY-Buffalo, NY.
  • Whitman, R. V. (1970). Hydraulic fills to support structural loads. Journal of the Soil Mechanics and Foundations Division, 96, 23–47.
  • Whitman, R. V. (1985). Liquefaction of soils during earthquakes. Washington, DC: Committee on Earthquake Engineering, National Research Council, National Academy Press.
  • Whitman, R. V., & Lambe, P. C. (1986). Effect of boundary conditions upon centrifuge experiments using ground motion simulation. Geotechnical Testing Journal, ASTM, 9, 19–26.
  • Youd, T. L., Idriss, I. M., Andrus, R., Arango, I., Castro, G., Christian, J., … Stokoe, K. H. (2001). Liquefaction resistance of soils: Summary report from the 1996 NCEER and 1998 NCEER/NSF workshops on evaluation of liquefaction resistance of soils. Journal of Geotechnical and Geoenvironmental Engineering, 127, 817–833.
  • Ziotopoulou, K., Boulanger, R. W., & Kramer, S. L. (2012). Site response analysis of liquefying sites. Geo-Congress, ASCE, 1799–1808. doi:10.1061/9780784412121.185.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.