238
Views
23
CrossRef citations to date
0
Altmetric
Articles

Performance of concrete containing crushed brick aggregate exposed to different fire temperatures

&
Pages 805-824 | Received 03 Apr 2014, Accepted 02 Oct 2014, Published online: 30 Oct 2014

References

  • Abed, F. M. (2009). Using of recycled aggregate in producing concrete elements (thesis of master of science in civil engineering – Design and rehabilitation of structures). The Islamic University-Gaza, Palestine.
  • Abrams, M. S. (1971). Compressive strength of concrete at temperatures to 1600 F. Temperature and Concrete, SP-25. Detroit, MI: American Concrete Institute.
  • AFNOR P 18-418. (1989, Décembre). Association française de normalisation – Auscultation sonique, mesure du temps de propagation d’ondes soniques dans le béton. Tour europe cedex 7 92080. Paris la défense.
  • AFNOR P 18-554. (1990, Décembre). Association française de normalisation – Mesures des masses volumique, de la porosité, du coefficient d’absorption et de la teneur en eau des gravillons et cailloux. Tour europe cedex 7 92049. Paris la défense.
  • Aïtcin, P. C. (2003). The durability characteristics of high performance concrete: A review. Cement & Concrete Composites, 25, 409–420.
  • Alonso, C., Andrade, C., & Khoury, G. A. (2003). Course on effect of Heat on Concrete, Porosity & Microcracking, International Centre for Mechanical Sciences (CISM), Institute of Construction Science ‘Eduardo Torroja’, CSIC, Madrid, Spain, Imperial College, London University, UK, 9-13 June 2003, Udine, Italy. (pp. 1–17).
  • Arioz, O. (2007). Effects of elevated temperatures on properties of concrete. Fire Safety Journal, 42, 516–522.10.1016/j.firesaf.2007.01.003
  • Bazant, Z. P., & Kaplan, M. F. (1996). Concrete at high temperatures: Material properties and mathematical models. Essex: Longman Group.
  • Behnood, A. (2005). Effects of high temperatures on the high-strength concretes incorporating copper slag as coarse aggregate. Seventh International Symposium on Utilization of High-Strength/Performance Concrete, SP-228-66 (pp. 1063–1075). Washington: American Concrete Institute.
  • Behnood, A., & Ghandehari, M. (2009). Comparison of compressive and splitting tensile strength of high-strength concrete with and without polypropylene fibers heated to high temperatures. Fire Safety Journal, 44, 1015–1022.10.1016/j.firesaf.2009.07.001
  • Biolzi, L., Cattaneo, S., & Rosati, G. (2008). Evaluating residual properties of thermally damaged concrete. Cement & Concrete Composites, 30, 907–916.
  • Butler, L., West, J. S., Tighe, S. L. (2011). Quantification of recycled concrete aggregate (RCA) properties for usage in bridges and pavements: An Ontario case study. In Innovative Developments in Sustainable Pavements, Annual Conference of the Transportation Association of Canada (pp. 1–17). Edmonton, AB.
  • Castillo, C., & Durrani, A. J. (1990). Effect of transient high temperature on high-strength concrete. ACI Materials Journal, 87, 47–53.
  • Chan, S., Peng, G., & Anson, M. (1999). Fire behavior of high-performance concrete made with silica fume at various moisture contents. ACI Materials Journal, 96, 405–411.
  • Chen, B., Li, C., & Chen, L. (2009). Experimental study of mechanical properties of normal-strength concrete exposed to high temperatures at an early age. Fire Safety Journal, 44, 997–1002.10.1016/j.firesaf.2009.06.007
  • Cheng, F., Kodur, V. K., & Wang, T. C. (2004). Stress–strain curves for high strength concrete at elevated temperatures. Journal of Materials in Civil Engineering, 16, 84–94.10.1061/(ASCE)0899-1561(2004)16:1(84)
  • Diederiches, U., Jumppanen, U. M., Schneider, U. (1995). High temperature properties and spalling behavior of high strength concrete. Proceedings of the Fourth Weimar Workshop on High Strength Concrete: Materials Properties and Design, Germany (pp. 237–254).
  • Dreux, G., & Festa, J. (1998). Nouveau guide du béton et de ses constituants. Edition Eyrolles, 8, 205–284.
  • Fares, H., Noumowe, A., & Remond, S. (2009). Self-consolidating concrete subjected to high temperature. Cement and Concrete Research, 39, 1230–1238.10.1016/j.cemconres.2009.08.001
  • Felicetti, R., & Gambarova, P. G. (1998). Effects of high temperature on the residual compressive strength of high-strength siliceous concretes. ACI Materials Journal, 95, 395–406.
  • Felicetti, R., & Gambarova, G. P. (2008). Fire design of concrete structures–structural behavior and assessment. International Federation for Structural Concrete, State of art report, Bulletin 46, pp. 63–114.
  • Finoženok, O., Žurauskienė, R., & Žurauskas, R. (2013). The influence of crushed concrete demolition waste aggregates on the hardening process of concrete mixtures. Materials Science (Medžiagotyra), 19, 96–102.
  • Gardner, D. R., Lark, R. J., & Barr, B. (2005). Effect of conditioning temperature on the strength and permeability of normal- and high-strength concrete. Cement and Concrete Research, 35, 1400–1406.10.1016/j.cemconres.2004.08.012
  • Gaweska, I. (2004). Comportement à haute température des bétons à haute performance évolution des principales propriétés mécaniques (Thèse de Doctorat). Paris: Ecole Nationale des Ponts et Chaussées et l’Ecole Polytechnique de Cracovie.
  • Hachana, A. (2008). Etude des bétons à base des agrégats de démolition. Biskra: Mémoire de magistère, Université Mohamed Khider.
  • Hertz, K. D. (2005). Concrete strength for fire safety design. Magazine of Concrete Research, 57, 445–453.10.1680/macr.2005.57.8.445
  • Hoff, G., Bilodeau, A., & Malhotra, V. M. (2000). Elevated temperature effects on HSC residual strength. Concrete International, 22, 41–47.
  • Husem, M. (2006). The effects of high temperature on compressive and flexural strengths of ordinary and high-performance concrete. Fire Safety Journal, 4, 155–163.10.1016/j.firesaf.2005.12.002
  • ISO/TR 15655. (2003). Fire resistance – Tests for thermo-physical and mechanical properties of structural materials at elevated temperatures for fire engineering design. ( Technical report) Geneva.
  • Kesegić, I., Netinger, I., & Bjegović, D. (2008). Recycled clay brick as an aggregate for concrete: Overview. Technical Gazette, 3, 35–40.
  • Khalaf, F., & DeVenny, A. (2004). Performance of brick aggregate concrete at high temperatures. Journal of Materials in Civil Engineering, 16, 556–565.10.1061/(ASCE)0899-1561(2004)16:6(556)
  • Kodur, V. K. R., & Sultan, M. A. (2003). Effect of temperature on thermal properties of high-strength concrete. Journal of Materials in Civil Engineering, 15, 101–107.10.1061/(ASCE)0899-1561(2003)15:2(101)
  • Kowalski, R. (2007). The effects of the cooling rate on the residual properties of heated-up concrete. Structural Concrete, 8, 11–15.10.1680/stco.2007.8.1.11
  • Kwan, W. H., Ramli, M., Kam, K. J., & Sulieman, M. Z. (2012). Influence of the amount of recycled coarse aggregate in concrete design and durability properties. Construction and Building Materials, 26, 565–573.
  • Lea, F. C. (1920). Effect of temperature on some of the properties of material. Engineering, 110, 293–298.
  • Malhotra, H. L. (1956). The effect of temperature on the compressive strength of concrete. Magazine of Concrete Research, 8, 85–94.10.1680/macr.1956.8.23.85
  • Menzel, C. A. (1943). Tests of the fire resistance and thermal properties of solid concrete slabs and their significance. Proceedings – American Society of Testing Materials, 43, 1099–1153.
  • Mindeguia, J.-C., Pimienta, P., Carré, H., & La Borderie, C. (2012). On the influence of aggregate nature on concrete behaviour at high temperature. European Journal of Environmental and Civil Engineering, 16, 236–253.10.1080/19648189.2012.667682
  • Nassar, R.-U.-D., & Soroushian, P. (2012). Strength and durability of recycled aggregate concrete containing milled glass as partial replacement for cement. Construction and Building Materials, 29, 368–377.10.1016/j.conbuildmat.2011.10.061
  • Nelson, Shing Chai NGO. (2004). High-strength structural concrete with recycled aggregates. Course ENG 4111 and ENG 4112 Research Project.
  • Niry, R., Beaucour, A.-L., Hebert, R., Noumowé, A., Ledésert, B., & Bodet, R. (2013). Thermal stability of different siliceous and calcareous aggregates subjected to high temperature. MATEC Web of Conferences, 6, 07001:01–07001:09.
  • Phan, L. T., & Carino, N. J. (2002). Effects of test conditions and mixture proportions on behavior of high-strength concrete exposed to high temperatures. ACI Materials Journal, 99, 54–66.
  • Poon, C., Azhar, S., Anson, M., & Wong, Y. (2001). Comparison of the strength and durability performance of normal and high-strength pozzolanic concretes at elevated temperatures. Cement and Concrete Research, 31, 1291–1300.10.1016/S0008-8846(01)00580-4
  • Rahman, I. A., Hamdam, H., Mujahid, A., & Zaidi, A. (2009). Assessment of recycled aggregate concrete. Modern Applied Science, 3, 47–54.
  • Rayssac, E., Auriol, J. C., Deneele, D., Larrard, F., Ledee, V., & Platret, G. (2009). Valorisation de laitiers d’aciérie LD pour les infrastructures routières. Bulletin des Laboratoires des Ponts et Chaussées, 275, 27–38.
  • Sarshar, R., & Khoury, G. A. (1993). Material and environmental factors influencing the compressive strength of unsealed cement paste and concrete at high temperatures. Magazine of Concrete Research, 45, 51–61.10.1680/macr.1993.45.162.51
  • Savva, A., Manita, P., & Sideris, K. K. (2005). Influence of elevated temperatures on the mechanical properties of blended cement concretes prepared with limestone and siliceous aggregates. Cement & Concrete Composites, 27, 239–248.
  • Thomas, C., Cimentada, A., Polanco, J. A., Setién, J., Méndez, D., & Rico, J. (2013). Influence of recycled aggregates containing sulphur on properties of recycled aggregate mortar and concrete. Composites Part B: Engineering, 45, 474–485.10.1016/j.compositesb.2012.05.019
  • Tsujino, M., Noguchi, T., Tamura, M., Kanematsu, M., & Maruyama, I. (2007). Application of conventionally recycled coarse aggregate to concrete structure by surface modification treatment. Journal of Advanced Concrete Technology, 5, 13–25.10.3151/jact.5.13
  • Whitehurst, E. A. (1951). Soniscope tests concrete structures. Journal of the American Concrete Institute, 47, 443–444.
  • Xiao, J., & Falkner, H. (2006). On residual strength of high-performance concrete with and without polypropylene fibres at elevated temperatures. Fire Safety Journal, 41, 115–121.10.1016/j.firesaf.2005.11.004
  • Xing, Z., Beaucour, A.-L., Hebert, R., Noumowe, A., & Ledesert, B. (2011). Influence of the nature of aggregates on the behaviour of concrete subjected to elevated temperature. Cement and Concrete Research, 41, 392–402.10.1016/j.cemconres.2011.01.005
  • Yüzer, N., Aköz, F., & Öztürk, L. D. (2004). Compressive strength-color change relation in mortars at high temperature. Cement and Concrete Research, 34, 1803–1807.10.1016/j.cemconres.2004.01.015
  • Zain, M. F. M., Safiuddin, Md., & Mahmud, H. (2000). Development of high performance concrete using silica fume at relatively high water-binder ratios. Cement and Concrete Research, 30, 1501–1505.10.1016/S0008-8846(00)00359-8
  • Zega, C. J., & Di Maio, A. A. (1926). Recycled concrete exposed to high temperatures. Magazine of Concrete Research, 58, 675–682.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.