238
Views
4
CrossRef citations to date
0
Altmetric
Articles

Estimation of the effective thermal properties of cracked rocks

, , , , &
Pages 954-970 | Received 01 Jun 2015, Accepted 07 Aug 2015, Published online: 11 Sep 2015

References

  • Abdulagatova, Z., Abdulagatov, I. M., & Emirov, V. N. (2009). Effect of temperature and pressure on the thermal conductivity of sandstone. International Journal of Rock Mechanics & Mining Sciences, 46, 1055–1071.
  • Aichlmayr, H. T., & Kulacki, F. A. (2006). The effective thermal conductivity of saturated porous media. In J. P. H. A. B.-C. George, A. Greene, & I. C. Young (Eds.), Advances in heat transfer (pp. 377–460). Salt Lake City: Elsevier.
  • Alishaev, M. G., Abdulagatov, I. M., & Abdulagatova, Z. Z. (2012). Effective thermal conductivity of fluid-saturated rocks. Engineering Geology, 135–136, 24–39.10.1016/j.enggeo.2012.03.001
  • Alonso, E. E., Zandarín, M. T., & Olivella, S. (2013). Joints in unsaturated rocks: Thermo-hydro-mechanical formulation and constitutive behaviour. Journal of Rock Mechanics and Geotechnical Engineering, 5(3), 200–213.
  • Birch, F., & Clark, H. (1940). The thermal conductivity of rocks and its dependence upon temperature and composition. American Journal of Science, 238, 613–635.10.2475/ajs.238.9.613
  • Brodsky, N. S., Riggins, M., & Connolly, J. (1997). Thermal expansion, thermal conductivity, and heat capacity measurements at Yucca Mountain, Nevada. International Journal of Rock Mechanics and Mining Sciences, 34, 40–55.
  • Buntebarth, G., & Schopper, J. R. (1998). Experimental and theoretical investigations on the influence of fluids, solids and interactions between them on thermal properties of porous rocks. Physics and Chemistry of the Earth, 23, 1141–1146.10.1016/S0079-1946(98)00142-6
  • Chen, Y., Li, D., Jiang, Q., & Zhou, C. (2012). Micromechanical analysis of anisotropic damage and its influence on effective thermal conductivity in brittle rocks. International Journal of Rock Mechanics and Mining Sciences, 50, 102–116.10.1016/j.ijrmms.2011.11.003
  • Chen, Y., Zhou, S., Hu, R., & Zhou, C. (2015). A homogenization-based model for estimating effective thermal conductivity of unsaturated compacted bentonites. International Journal of Heat and Mass Transfer, 83, 731–740.10.1016/j.ijheatmasstransfer.2014.12.053
  • Cheng, A. H. D. (1997). Material coefficients of anisotropic poroelasticity. International Journal of Rock Mechanics & Mining Sciences, 34, 199–205.
  • Cho, W. J., Kwon, S., & Choi, J. W. (2009). The thermal conductivity for granite with various water contents. Engineering Geology, 107, 167–171.10.1016/j.enggeo.2009.05.012
  • Clauser, C., & Huenges, E. (1995). Thermal conductivity of rocks and minerals. In T. J. Ahrens (Ed.), Rock physics and phase relations: A handbook of physical constants  (pp. 105–126).  Washington, DC:  AGU Reference Shelf. 1080–305X, 3. ISBN: 0-87590-853-5.
  • Cooper, H. W., & Simmons, G. (1977). The effect of cracks on the thermal expansion of rocks. Earth and Planetary Science Letters, 36, 404–412.10.1016/0012-821X(77)90065-6
  • Cui, Y. J., & Anh Minh Tang. (2013). On the chemothermo-hydro-mechanical behaviour of geological and engineered barriers. Journal of Rock Mechanics and Geotechnical Engineering, 5(3), 169–178.
  • Davis, M. G., Chapman, D. S., VanWagoner, T. M., & Armstrong, P. A. (2007). Thermal conductivity anisotropy of metasedimentary and igneous rocks. Journal of Geophysical Research: Solid Earth (1978–2012), 112,  B05216 (1–7).
  • Demirci, A., Gorgulu, K., & Duruturk, Y. S. (2004). Thermal conductivity of rocks and its variation with uniaxial and triaxial stress. International Journal of Rock Mechanics & Mining Sciences, 41, 1133–1138.
  • Eshelby, J. D. (1961). Elastic inclusions and inhomogeneities. In I. N. Sneddon & R. Hill (Eds.), Progress in solid mechanics (Vol. 2, pp. 89–140). Amsterdam: North-Holland.
  • Giraud, A., Gruescu, C., Do, D. P., Homand, F., & Kondo, D. (2007). Effective thermal conductivity of transversely isotropic media with arbitrary oriented ellipsoïdal inhomogeneities. International Journal of Solids and Structures, 44, 2627–2647.10.1016/j.ijsolstr.2006.08.011
  • Gorgulu, K., Duruturk, Y. S., Demirci, A., & Poyraz, B. (2008). Influences of uniaxial stress and moisture content on the thermal conductivity of rocks. International Journal of Rock Mechanics & Mining Sciences, 45, 1439–1445.
  • Gruescu, C., Giraud, A., Homand, F., Kondo, D., & Do, D. P. (2007). Effective thermal conductivity of partially saturated porous rocks. International Journal of Solids and Structures, 44, 811–833.10.1016/j.ijsolstr.2006.05.023
  • Hsu, C. T., Cheng, P., & Wong, K. W. (1994). Modified Zehner–Schlunder models for stagnant thermal conductivity of porous media. International Journal of Heat and Mass Transfer, 37, 2751–2759.10.1016/0017-9310(94)90392-1
  • Hu, D. W., Zhou, H., Zhang, F., & Shao, J. F. (2010). Evolution of poroelastic properties and permeability in damaged sandstone. International Journal of Rock Mechanics & Mining Sciences, 47, 962–973.
  • Hu, D. W., Zhou, H., & Shao, J. F. (2013). An anisotropic damage-plasticity model for saturated quasi-brittle materials. International Journal for Numerical and Analytical Methods in Geomechanics, 37, 1691–1710.10.1002/nag.v37.12
  • Jorand, R., Fehr, A., Koch, A., & Clauser, C. (2011). Study of the variation of thermal conductivity with water saturation using nuclear magnetic resonance. Journal of Geophysical Research: Solid Earth (1978–2012), 116,  B08208 (1–12).
  • Kachanov, M., Sevostianov, I., & Shafiro, B. (2001). Explicit cross-property correlations for porous materials with anisotropic microstructures. Journal of the Mechanics and Physics of Solids, 49(1), 1–25.10.1016/S0022-5096(00)00033-8
  • Nagaraju, P., & Roy, S. (2014). Effect of water saturation on rock thermal conductivity measurements. Tectonophysics, 626, 137–143.10.1016/j.tecto.2014.04.007
  • Popov, Y., Tertychnyi, V., Romushkevich, R., Korobkov, D., & Pohl, J. (2003). Interrelations between thermal conductivity and other physical properties of rocks: Experimental data. Pure and Applied Geophysics, 160, 1137–1161.10.1007/PL00012565
  • Robertson, E. C., & Peck, D. L. (1974). Thermal conductivity of vesicular basalt from Hawaii. Journal of Geophysical Research, 79, 4875–4888.10.1029/JB079i032p04875
  • Schapery, R. A. (1968). Thermal expansion coefficients of composite materials based on energy principles. Journal of Composite Materials, 2, 380–404.10.1177/002199836800200308
  • Schärli, U., & Rybach, L. (1984). On the thermal conductivity of low-porosity crystalline rocks. Tectonophysics, 103, 307–313.10.1016/0040-1951(84)90092-1
  • Seipold, U. (1998). Temperature dependence of thermal transport properties of crystalline rocks – A general law. Tectonophysics, 291, 161–171.10.1016/S0040-1951(98)00037-7
  • Sevostianov, I. (2006). Thermal conductivity of a material containing cracks of arbitrary shape. International Journal of Engineering Science, 44, 513–528.10.1016/j.ijengsci.2006.04.001
  • Sevostianov, I. (2012). On the thermal expansion of composite materials and cross-property connection between thermal expansion and thermal conductivity. Mechanics of Materials, 45, 20–33.10.1016/j.mechmat.2011.10.001
  • Simmons, G., & Richter, D. (1976). Microcracks in rocks. The Physics and Chemistry of Minerals and Rocks, 105–137.
  • Somerton, W. (1992). Thermal properties and temperature-related behavior of rock/fluid systems. Amsterdam: Elsevier Science.
  • Walsh, J. B., & Decker, E. R. (1966). Effect of pressure and saturating fluid on the thermal conductivity of compact rock. Journal of Geophysical Research, 71, 3053–3061.10.1029/JZ071i012p03053
  • Woodside, W., & Messmer, J. H. (1961). Thermal conductivity of porous media. II. Consolidated rocks. Journal of Applied Physics, 32, 1699–1709.10.1063/1.1728420
  • Yu, L., Weetjens, E., & Sillen, X. (2014). Consequences of the thermal transient on the evolution of the damaged zone around a repository for heat-emitting high-level radioactive waste in a clay formation: A performance assessment perspective. Rock Mechanics and Rock Engineering, 47, 3–19.10.1007/s00603-013-0409-4
  • Zhu, Q. Z., Kondo, D., & Shao, J. F. (2008). Micromechanical analysis of coupling between anisotropic damage and friction in quasi brittle materials: Role of the homogenization scheme. International Journal of Solids and Structures, 45, 1385–1405.10.1016/j.ijsolstr.2007.09.026
  • Zimmerman, R. W. (1989). Thermal conductivity of fluid-saturated rocks. Journal of Petroleum Science and Engineering, 3, 219–227.10.1016/0920-4105(89)90019-3

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.