348
Views
5
CrossRef citations to date
0
Altmetric
Articles

Elastoplastic modelling the creep behaviour of cataclastic rock under multi-stage deviatoric stress

, , , &
Pages 650-665 | Received 18 Dec 2014, Accepted 22 Jul 2016, Published online: 05 Aug 2016

References

  • Amitrano, D., & Helmstetter, A. (2006). Brittle creep, damage, and time to failure in rocks. Journal of Geophysical Research, 111, B11201. doi:10.1029/2005JB004252
  • Barla, G., Debernardi, D., & Sterpi, D. (2012). Time-dependent modeling of tunnels in squeezing conditions. International Journal of Geomechanics, 12, 697–710.10.1061/(ASCE)GM.1943-5622.0000163
  • Bazant, Z. P., & Xi, Y. (1994). Drying creep of concrete: Constitutive model and new experiments separating its mechanism. Materials and Structures, 27, 3–14.10.1007/BF02472815
  • Bodas, F. T. M., Potts, D. M., & Zdravkovic, L. (2011). A time dependent constitutive model for soils with isotach viscosity. Computers and Geotechnics, 38, 809–820.10.1016/j.compgeo.2011.05.008
  • Bonini, M., Debernardi, D., Barla, M., & Barla, G. (2009). The mechanical behaviour of clay shales and implications on the design of tunnels. Rock Mechanics and Rock Engineering, 42, 361–388.10.1007/s00603-007-0147-6
  • Brantut, N., Baud, P., Heap, M. J., & Meredith, P. G. (2012). Micromechanics of brittle creep in rock. Journal of Geophysical Research, 117, B08412. doi:10.1029/2012JB009299
  • Burgi, C., Parriaux, A., Franciosi, G., & Rey, J. P. (1999). Cataclastic rocks in underground structures-terminology and impact on the feasibility of projects (initial results). Engineering Geology, 51, 225–235.10.1016/S0013-7952(97)00079-3
  • Chen, H., & Hu, Z. Y. (2003). Some factors affecting the uniaxial strength of weak sandstones. Bulletin of Engineering Geology and the Environment, 62, 323–332.10.1007/s10064-003-0207-4
  • Chiarelli, A. S., Shao, J. F., & Hoteit, N. (2003). Modeling of elastoplastic damage behavior of a claystone. International Journal of Plasticity, 19, 23–45.10.1016/S0749-6419(01)00017-1
  • Dusseault, M. B., & Fordham, C. J. (1993). Time dependent behaviour of rocks, Comprehensive Rock Engineering: principles, practice and projects (pp. 119–149). Oxford: Pergamon Press.
  • Fabre, G., & Pellet, F. (2006). Creep and time-dependent damage in argillaceous rocks. International Journal of Rock Mechanics & Mining Sciences, 43, 950–960.
  • Gudmundsson, A., Simmenes, T. H., Belinda, L., & Sonja, L. P. (2010). Effects of internal structure and local stresses on fracture propagation, deflection, and arrest in fault zones. Journal of Structural Geology, 32, 1643–1655.10.1016/j.jsg.2009.08.013
  • Habimana, J., Labiouse, V., & Descoeudres, F. (2002). Geomechanical characterisation of cataclastic rocks: Experience from the Cleuson-Dixence project. International Journal of Rock Mechanics and Mining Sciences, 39, 677–693.10.1016/S1365-1609(02)00042-4
  • Haupt, P., & Kersten, T. (2003). On the modelling of anisotropic material behaviour in viscoplasticity. International Journal of Plasticity, 19, 1885–1915.10.1016/S0749-6419(03)00044-5
  • Heap, M. J., Baud, P., Meredith, P. G., Bell, A. F., & Main, I. G. (2009). Time-dependent brittle creep in Darley Dale sandstone. Journal of Geophysical Research, 114, B07203. doi:10.1029/2008JB-006212
  • Jia, Y., Bian, H. B., Su, K., Kondo, D., & Shao, J. F. (2010). Elastoplastic damage modeling of desaturation and resaturation in argillites. International Journal for Numerical and Analytical Methods in Geomechanics, 34, 187–220.
  • Jiang, T., Shao, J. F., & Xu, W. Y. (2011). A micromechanical analysis of elastoplastic behavior of porous materials. Mechanics Research Communications, 38, 437–442.10.1016/j.mechrescom.2011.05.011
  • Mahajan, S. P., & Budhu, M. (2006). Viscous effects on penetrating shafts in clays. Acta Geotechnica, 1, 157–165.10.1007/s11440-006-0014-8
  • Main, I. G. (2000). A damage mechanics model for power law creep and earthquake aftershocks and foreshock sequences. Geophysical Journal International, 142, 151–161.10.1046/j.1365-246x.2000.00136.x
  • Pietruszczak, S., Lydzba, D., & Shao, J. F. (2004). Description of creep in frictional materials in terms of microstructure evolution. Journal of Engineering Mechanics, 130, 681–690.10.1061/(ASCE)0733-9399(2004)130:6(681)
  • Saleeb, A. F., & Arnold, S. M. (2004). Specific hardening function definition and characterization of a multi mechanism generalized potential-based viscoelastoplasticity model. International Journal of Plasticity, 20, 2111–2142.10.1016/j.ijplas.2004.04.002
  • Sexton, B. G., & McCabe, B. A. (2013). Numerical modelling of the improvements to primary and creep settlements offered by granular columns. Acta Geotechnica, 8, 447–464.10.1007/s11440-012-0205-4
  • Shao, J. F., Jia, Y., Kondo, D., & Chiarelli, A. S. (2006). A coupled elastoplastic damage model for semi-brittle materials and extension to unsaturated conditions. Mechanics of Materials, 38, 218–232.10.1016/j.mechmat.2005.07.002
  • Shao, J. F., Zhu, Q. Z., & Su, K. (2003). Modeling of creep in rock materials in terms of material degradation. Computers and Geotechnics, 30, 549–555.10.1016/S0266-352X(03)00063-6
  • Tsai, L. S., Hsieh, Y. M., Weng, M. C., Huang, T. H., & Jeng, F. S. (2008). Time-dependent deformation behaviors of weak sandstones. International Journal of Rock Mechanics & Mining Sciences, 45, 144–154.
  • Voyiadjis, G., AlRub, R., & Palazotto, A. (2004). Thermodynamic framework for coupling of non-local viscoplasticity and non-local anisotropic viscodamage for dynamic localization problems using gradient theory. International Journal of Plasticity, 20, 981–1038.10.1016/j.ijplas.2003.10.002
  • Wang, R. B., Xu, W. Y., Wang, W., & Zhang, J. C. (2013). A nonlinear creep damage model for brittle rocks based on time-dependent damage. European Journal of Environmental and Civil Engineering, 17(sup1), s111–s125.10.1080/19648189.2013.834589
  • Xie, S. Y., & Shao, J. F. (2015). An experimental study and constitutive modeling of saturated porous rocks. Rock Mechanics and Rock Engineering, 48, 223–234. doi:10.1007/s00603-014-0561-5
  • Yang, W. D., Zhang, Q. Y., Li, S. C., & Wang, S. G. (2014). Time-dependent behavior of diabase and a nonlinear creep model. Rock Mechanics and Rock Engineering, 47, 1211–1224. doi:10.1007/s00603-013-0478-4
  • Yin, J. H., & Tong, F. (2011). Constitutive modeling of time-dependent stress–strain behaviour of saturated soils exhibiting both creep and swelling. Canadian Geotechnical Journal, 48, 1870–1885.10.1139/t11-076
  • Zhang, Y., Xu, W. Y., Gu, J. J., & Wang, W. (2013). Triaxial creep tests of weak sandstone from the deflection zone of high dam foundation. Journal of Central South University, 20, 2528–2536.10.1007/s11771-013-1765-7
  • Zhang, Y., Shao, J. F., Xu, W. Y., Jia, Y., & Zhao, H. B. (2015). Creep behaviour and permeability evolution of cataclastic sandstone in triaxial rheological tests. European Journal of Environmental and Civil Engineering, 19, 496–519.10.1080/19648189.2014.960103
  • Zhang, Y., Shao, J. F., Xu, W. Y., Zhao, H. B., & Wang, W. (2015). Experimental and numerical investigations on strength and deformation behavior of cataclastic sandstone. Rock Mechanics and Rock Engineering, 48, 1083–1096.10.1007/s00603-014-0623-8
  • Zhang, Y., Shao, J. F., Xu, W. Y., & Jia, Y. (2016). Time-dependent behavior of cataclastic rocks in a multi-loading triaxial creep test. Rock Mechanics and Rock Engineering. doi:10.1007/s00603-016-0948-6
  • Zhou, H., Bian, H. B., Jia, Y., & Shao, J. F. (2013). Elastoplastic damage modeling the mechanical behavior of rock-like materials considering confining pressure dependency. Mechanics Research Communications, 53, 1–8.10.1016/j.mechrescom.2013.07.008
  • Zhou, H. W., Wang, C. P., Han, B. B., & Duan, Z. Q. (2011). A creep constitutive model for salt rock based on fractional derivatives. International Journal of Rock Mechanics & Mining Sciences, 48, 116–121.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.