2,526
Views
7
CrossRef citations to date
0
Altmetric
Articles

Piping erosion safety assessment of flood defences founded over sewer pipes

, , &
Pages 707-735 | Received 27 Jan 2016, Accepted 18 Jul 2016, Published online: 08 Aug 2016

References

  • Aguilar-López, J. P., Warmink, J. J., Schielen, R. M. J., & Hulscher, S. J. M. H. (2016). Soil stochastic parameter correlation impact in the piping erosion failure estimation of riverine flood defences. Structural Safety, 60, 117–129. doi:10.1016/j.strusafe.2016.01.004
  • Bear, J., & Verruijt, A. (1987). Modeling groundwater flow and pollution (Vol. 2). Dordrecht: Springer Science & Business Media.10.1007/978-94-009-3379-8
  • Bersan, S., Jommi, C., Koelewijn, A., & Simonini, P. (2013). Applicability of the fracture flow interface to the analysis of piping in granular material. COMSOL Conference 2013, Rotterdam.
  • Bligh, W. (1910). Dams, barrages and weirs on porous foundations. Engineering News, 64, 708–710.
  • Bucher, C., & Most, T. (2008). A comparison of approximate response functions in structural reliability analysis. Probabilistic Engineering Mechanics, 23, 154–163. doi:10.1016/j.probengmech.2007.12.022
  • Chen, N., Gunzburger, M., Hu, B., Wang, X., & Woodruff, C. (2012). Calibrating the exchange coefficient in the modified coupled continuum pipe-flow model for flows in karst aquifers. Journal of Hydrology, 414–415, 294–301. doi:10.1016/j.jhydrol.2011.11.001
  • Cho, S. E. (2009). Probabilistic stability analyses of slopes using the ANN-based response surface. Computers and Geotechnics, 36, 787–797. doi:10.1016/j.compgeo.2009.01.003
  • Chojaczyk, A. A., Teixeira, A. P., Neves, L. C., Cardoso, J. B., & Guedes Soares, C. (2015). Review and application of artificial neural networks models in reliability analysis of steel structures. Structural Safety, 52, Part A, 78–89. doi:10.1016/j.strusafe.2014.09.00210.1016/j.strusafe.2014.09.002
  • El Shamy, U., & Aydin, F. (2008). Multiscale modeling of flood-induced piping in river levees. Journal of Geotechnical and Geoenvironmental Engineering, 134, 1385–1398.10.1061/(ASCE)1090-0241(2008)134:9(1385)
  • Elishakoff, I. (2012). Safety factors and reliability: Friends or foes? Dordrecht: Springer Science & Business Media.
  • Forrester, A., Sobester, A., & Keane, A. (2008). Engineering design via surrogate modelling: A practical guide. West Sussex: Wiley.10.1002/9780470770801
  • Hoffmans, G. J. C. M. (2014). An overview of piping models. 7th International Conference on Scour and Erosion, Perth, Australia.
  • Jianhua, Y. (1998). FE modelling of seepage in embankment soils with piping zone. Chinese Journal of rock mechanics and engineering, 17, 679–689.
  • Kaunda, R. B. (2015). A neural network assessment tool for estimating the potential for backward erosion in internal erosion studies. Computers and Geotechnics, 69, 1–6. doi:10.1016/j.compgeo.2015.04.010
  • Kingston, G. B., Rajabalinejad, M., Gouldby, Ben P.;Van Gelder, P. H. (2011). Computational intelligence methods for the efficient reliability analysis of complex flood defence structures. Structural Safety, 33, 64–73. doi:10.1016/j.strusafe.2010.08.002
  • Koelewijn, A., De Vries, G., Van Lottum, H., Förster, U., Van Beek, V. M., & Bezuijen, A. (2014). Full-scale testing of piping prevention measures: Three tests at the IJkdijk. Proceedings of the Physical Modeling in Geotechnics, 2, 891–897.10.1201/b16200
  • Lachouette, D., Golay, F., & Bonelli, S. (2008). One-dimensional modeling of piping flow erosion. Comptes Rendus Mécanique, 336, 731–736. doi:10.1016/j.crme.2008.06.007
  • Lane, E. W. (1935). Security from under-seepage-masonry dams on earth foundations. Transactions of the American Society of Civil Engineers, 100, 1235–1272.
  • Li, D., Chen, Y., Lu, W., & Zhou, C. (2011). Stochastic response surface method for reliability analysis of rock slopes involving correlated non-normal variables. Computers and Geotechnics, 38, 58–68. doi:10.1016/j.compgeo.2010.10.006
  • Liedl, R., Sauter, M., Hückinghaus, D., Clemens, T., & Teutsch, G. (2003). Simulation of the development of karst aquifers using a coupled continuum pipe flow model. Water Resources Research, 39(3), n/a–n/a. doi:10.1029/2001WR001206
  • Lominé, F., Scholtès, L., Sibille, L., & Poullain, P. (2013). Modeling of fluid–solid interaction in granular media with coupled lattice Boltzmann/discrete element methods: Application to piping erosion. International Journal for Numerical and Analytical Methods in Geomechanics, 37, 577–596.10.1002/nag.v37.6
  • López De La Cruz, J., Calle, E., & Schweckendiek, T. (2011, June 2–3). Calibration of piping assessment models in the Netherlands. Proceedings of the 3rd International Symposium on Geotechnical Safety and Risk, ISGSR 2011. Bundesanstalt für Wasserbau, Munich, Germany.
  • Low, B. K. (2014). FORM, SORM, and spatial modeling in geotechnical engineering. Structural Safety, 49, 56–64. doi:10.1016/j.strusafe.2013.08.008
  • Lü, Q., & Low, B. K. (2011). Probabilistic analysis of underground rock excavations using response surface method and SORM. Computers and Geotechnics, 38, 1008–1021. doi:10.1016/j.compgeo.2011.07.003
  • Mott, R. L., Noor, F. M., & Aziz, A. A. (2006). Applied fluid mechanics. Singapore: Pearson Prentice Hall.
  • Muzychka, Y., & Yovanovich, M. (2009). Pressure drop in laminar developing flow in noncircular ducts: A scaling and modeling approach. Journal of Fluids Engineering, 131, 111105-1–111105-11.10.1115/1.4000377
  • Ojha, C. S. P., Singh, V. P., & Adrian, D. D. (2008). Assessment of the role of slit as a safety valve in failure of levees. International Journal of Sediment Research, 23, 361–375. doi:10.1016/S1001-6279(09)60007-X
  • Piotrowski, A. P., & Napiorkowski, J. J. (2013). A comparison of methods to avoid overfitting in neural networks training in the case of catchment runoff modelling. Journal of Hydrology, 476, 97–111. doi:10.1016/j.jhydrol.2012.10.019
  • Samardzioska, T., & Popov, V. (2005). Numerical comparison of the equivalent continuum, non-homogeneous and dual porosity models for flow and transport in fractured porous media. Advances in Water Resources, 28, 235–255. doi:10.1016/j.advwatres.2004.11.002
  • Schoefs, F., Le, K. T., & Lanata, F. (2013). Surface response meta-models for the assessment of embankment frictional angle stochastic properties from monitoring data: An application to harbour structures. Computers and Geotechnics, 53, 122–132. doi:10.1016/j.compgeo.2013.05.005
  • Schweckendiek, T., Vrouwenvelder, A. C. W. M., & Calle, E. O. F. (2014). Updating piping reliability with field performance observations. Structural Safety, 47, 13–23. doi:10.1016/j.strusafe.2013.10.002
  • Sellmeijer, J., López de la Cruz, J. L., van Beek, V. M., & Knoeff, H. (2011). Fine-tuning of the backward erosion piping model through small-scale, medium-scale and IJkdijk experiments. European Journal of Environmental and Civil Engineering, 15, 1139–1154. doi:10.1080/19648189.2011.9714845
  • Sellmeijer, J. (1988). On the mechanism of piping under impervious structures. TU Delft, Delft University of Technology, Delft..
  • Sellmeijer, J. (2006). Numerical computation of seepage erosion below dams (piping). In G. H. Gouda (Ed.), Third International Conference on Scour and Erosion 2006 (pp. 596–601). Amsterdam, The Netherlands: CUR Bouwn & Infra.
  • Sellmeijer, J., & Koenders, M. A. (1991). A mathematical model for piping. Applied Mathematical Modelling, 15, 646–651. doi:10.1016/S0307-904X(09)81011-1
  • Shamekhi, E., & Tannant, D. D. (2015). Probabilistic assessment of rock slope stability using response surfaces determined from finite element models of geometric realizations. Computers and Geotechnics, 69, 70–81. doi:10.1016/j.compgeo.2015.04.014
  • Terzaghi, K., Peck, R. B., & Mesri, G. (1996). Soil mechanics in engineering practice. New York: Wiley.
  • Tichý, M. (1988). On the reliability measure. Structural Safety, 5, 227–232. doi:10.1016/0167-4730(88)90011-2
  • Van Beek, V. M. (2015). Backward erosion piping: Initiation and progression (PhD dissertation). TU Delft, Delft University of Technology, Delft.
  • Van Beek, V. M., Vandenboer, K., & Bezuijen, A. (2014, December 2–4). Influence of sand type on pipe development in small-and medium-scale experiments. Scour and Erosion: Proceedings of the 7th International Conference on Scour and Erosion (pp. 111). Perth, Australia: CRC Press.10.1201/b17703
  • Van Beek, V. M., Knoeff, H., & Sellmeijer, H. (2011). Observations on the process of backward erosion piping in small-, medium- and full-scale experiments. European Journal of Environmental and Civil Engineering, 15, 1115–1137. doi:10.1080/19648189.2011.9714844
  • Van Esch, J., Sellmeijer, J., & Stolle, D. (2013). Modeling transient groundwater flow and piping under dikes and dams. 3rd International Symposium on Computational Geomechanics (ComGeo III). Krakow: International Centre for Computational Engineering.
  • Van Loon-Steensma, J. M., & Vellinga, P. (2014). Robust, multifunctional flood defenses in the Dutch rural riverine area. Natural Hazards and Earth System Science, 14, 1085–1098. doi:10.5194/nhess-14-1085-2014
  • Van Veelen, P., Voorendt, M., & Van der Zwet, C. (2015). Design challenges of multifunctional flood defences. A comparative approach to assess spatial and structural integration. Research in Urbanism Series, 3, 275–292
  • Vandenboer, K., Van Beek, V. M., & Bezuijen, A. (2014). 3D finite element method (FEM) simulation of groundwater flow during backward erosion piping. Frontiers of Structural and Civil Engineering, 8, 160–166. doi:10.1007/s11709-014-0257-7
  • Wang, D.-Y., Fu, X.-D., Jie, Y.-X., Dong, W.-J., & Hu, D. (2014). Simulation of pipe progression in a levee foundation with coupled seepage and pipe flow domains. Soils and Foundations, 54, 974–984.10.1016/j.sandf.2014.09.003
  • White, C. M. (1940). The equilibrium of grains on the bed of a stream. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 174, 322–338. doi:10.2307/97393
  • Yazdi, J., & Salehi Neyshabouri, S. A. A. (2014). Adaptive surrogate modeling for optimization of flood control detention dams. Environmental Modelling & Software, 61, 106–120. doi:10.1016/j.envsoft.2014.07.007
  • Zhang, J., Chen, H. Z., Huang, H. W., & Luo, Z. (2015). Efficient response surface method for practical geotechnical reliability analysis. Computers and Geotechnics, 69, 496–505. doi:10.1016/j.compgeo.2015.06.010
  • Zhou, X.-J., Jie, Y.-X., & Li, G.-X. (2012). Numerical simulation of the developing course of piping. Computers and Geotechnics, 44, 104–108. doi:10.1016/j.compgeo.2012.03.010