257
Views
9
CrossRef citations to date
0
Altmetric
Articles

A simplified model for railway catenary wire dynamics

, , &
Pages 936-959 | Received 23 Dec 2015, Accepted 05 Sep 2016, Published online: 24 Oct 2016

References

  • Acito, M., Stochino, F., & Tattoni, S. (2011). Structural response and reliability analysis of RC beam subjected to explosive loading. Applied Mechanics and Materials, 82, 434–439.
  • AminPour, H., & Rizzi, N. (2016). A one-dimensional continuum with microstructure for single-wall carbon nanotubes bifurcation analysis. Mathematics and Mechanics of Solids, 21, 168–181.
  • Andreaus, U., Baragatti, P., & Placidi, L. (2016). Experimental and numerical investigations of the responses of a cantilever beam possibly contacting a deformable and dissipative obstacle under harmonic excitation. International Journal of Non-Linear Mechanics, 80, 96–106.
  • Andreaus, U., Chiaia, B., & Placidi, L. (2013). Soft-impact dynamics of deformable bodies. Continuum Mechanics and Thermodynamics, 25, 375–398.
  • Andreu, A., Gil, L., & Roca, P. (2006). A new deformable catenary element for the analysis of cable net structures. Computers & Structures, 84, 1882–1890.
  • Andrews, H. I. (1964). Third paper: Calculating the behaviour of an overhead catenary system for railway electrification. In Proceedings of the Institution of Mechanical Engineers, 179, 809–846.
  • Arnold, M., & Simeon, B. (2000). Pantograph and catenary dynamics: A benchmark problem and its numerical solution. Applied Numerical Mathematics, 34, 345–362.
  • Becker, K., König, A., Resch, U., & Zweig, B.-W. (1995). Hochgeschwindigkeitsfahrleitung: Ein Thema für die Forschung [The high-speed catenary: A subject for research]. ETR -- Eisenbahntechnische Rundschau, 44, 64–72.
  • Berezovski, A., Giorgio, I., & Della Corte, A. (2016). Interfaces in micromorphic materials: Wave transmission and reflection with numerical simulations. Mathematics and Mechanics of Solids, 21, 37–51.
  • Bianchi, C., & Tacci, G. (1991). Stromabnehmer für Gleichstrombahnen [Pantograph for DC trains]. Elektrische Bahnen, 89, 429–435.
  • Bianchi, C., Tacci, G., & Vandi, A. (1991). Studio dell’interazione dinamica di pantografi-catenaria con programma di simulazione agli elementi finiti. Verifiche sperimentali [A study of the dynamic interaction of pantographs-catenary by a finite element simulation code. Experimental tests]. Ingegneria Ferroviaria, 46, 647–667.
  • Bishop, R. E. D., & Johnson, D. C. (1960). The mechanics of vibration. Cambridge: Cambridge University Press.
  • Brodkorb, A., & Semrau, M. (1993). Simulationsmodell des Systems Oberleitungskettenwerk und Stromabnehmer [Simulation model of the system overhead catenary and pantograh]. Elektrische Bahnen, 91, 105–113.
  • Cattani, M., Cazzani, A. M., & Mauro, R. (2000). Un modello semplificato della dinamica del filo di contatto [A simplified model for the dynamics of overhead contact wire]. Ingegneria Ferroviaria, 55, 708–716.
  • Cazzani, A. (2013). On the dynamics of a beam partially supported by an elastic foundation: An exact solution-set. International Journal of Structural Stability and Dynamics, 13, 1350045.
  • Cazzani, A., Malagù, M., & Turco, E. (2014a). Isogeometric analysis: A powerful numerical tool for the elastic analysis of historical masonry arches. Continuum Mechanics and Thermodynamics, 28, 139–156.
  • Cazzani, A., Malagù, M., & Turco, E. (2014b). Isogeometric analysis of plane-curved beams. Mathematics and Mechanics of Solids, 21, 562–577.
  • Cazzani, A., Malagù, M., Turco, E., & Stochino, F. (2016). Constitutive models for strongly curved beams in the frame of isogeometric analysis. Mathematics and Mechanics of Solids, 21, 182–209.
  • Cazzani, A., Stochino, F., & Turco, E. (2016a). An analytical assessment of finite element and isogeometric analyses of the whole spectrum of Timoshenko beams. Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik, 96, 1220–1244. doi:10.1002/zamm.201500280
  • Cazzani, A., Stochino, F., & Turco, E. (2016b). On the whole spectrum of Timoshenko beams. Part I: A theoretical revisitation. Zeitschrift für Angewandte Mathematik und Physik (ZAMP) [Journal of Applied Mathematics and Physics], 67, 1–30, Article ID: 24.
  • Cazzani, A., Stochino, F., & Turco, E. (2016c). On the whole spectrum of Timoshenko beams. Part II: Further applications. Zeitschrift für Angewandte Mathematik und Physik (ZAMP) [Journal of Applied Mathematics and Physics], 67, 1–21, Article ID: 25.
  • Cazzani, A., Wagner, N., Ruge, P., & Stochino, F. (2016). Continuous transition between traveling mass and traveling oscillator using mixed variables. International Journal of Non-Linear Mechanics, 80, 82–95.
  • Chiozzi, A., Malagù, M., Tralli, A., & Cazzani, A. (2016). ArchNURBS: NURBS-based tool for the structural safety assessment of masonry arches in MATLAB. ASCE Journal of Computing in Civil Engineering, 30, 04015010.
  • Contrafatto, L., Cuomo, M., & Di Venti, G. T. (2012). Finite elements with non homogeneous embedded discontinuities. In J. Eberhardsteiner, H. J. Böhm, & F. G. Rammerstorfer (Eds.), 6th European congress on computational methods in applied sciences and engineering ECCOMAS (pp. 35–46), Vienna, Austria.
  • Contrafatto, L., Cuomo, M., & Fazio, F. (2012). An enriched finite element for crack opening and rebar slip in reinforced concrete members. International Journal of Fracture, 178, 33–50.
  • Cuomo, M., Contrafatto, L., & Greco, L. (2014). A variational model based on isogeometric interpolation for the analysis of cracked bodies. International Journal of Engineering Science, 80, 173–188.
  • Cuomo, M., & Nicolosi, A. (2006). A poroplastic model for hygro-chemo-mechanical damage of concrete. In EURO-C; Computational modelling of concrete structures conference (pp. 533–542), Mayrhofen, Austria.
  • Dassault Syst\‘{a}mes. (2015). ABAQUS 6.14 documentation -- theory guide. Providence, RI: Dassault Syst\‘{a}mes.
  • dell’Isola, F., Della Corte, A., Giorgio, I., & Scerrato, D. (2016). Pantographic 2D sheets: Discussion of some numerical investigations and potential applications. International Journal of Non-Linear Mechanics, 80, 200–208.
  • dell’Isola, F., Giorgio, I., & Andreaus, U. (2015). Elastic pantographic 2D lattices: A numerical analysis on the static response and wave propagation. Proceedings of the Estonian Academy of Sciences, 64, 219–225.
  • dell’Isola, F., Giorgio, I., Pawlikowski, M., & Rizzi, N. L. (2016). Large deformations of planar extensible beams and pantographic lattices: Heuristic homogenization, experimental and numerical examples of equilibrium. Proceedings of the Royal Society A, 472, 20150790.
  • dell’Isola, F., Madeo, A., & Placidi, L. (2012). Linear plane wave propagation and normal transmission and reflection at discontinuity surfaces in second gradient 3D continua. ZAMM -- Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik, 92, 52–71.
  • Ding, Z. (1993). A general solution to vibrations of beams on variable Winkler elastic foundation. Computers & Structures, 47, 83–90.
  • Eremeyev, V. A., Ivanova, E. A., Morozov, N. F., & Strochkov, S. E. (2007). The spectrum of natural oscillations of an array of micro- or nanospheres on an elastic substrate. Doklady Physics, 52, 699–702.
  • Ferretti, M., & Piccardo, G. (2013). Dynamic modeling of taut strings carrying a traveling mass. Continuum Mechanics and Thermodynamics, 25, 469–488.
  • Gilbert, G., & Davies, H. E. H. (1966). Pantograph motion on a nearly uniform railway overhead line. Proceedings of the Institution of Electrical Engineers, 113, 485–492.
  • Greco, L., & Cuomo, M. (2015). Consistent tangent operator for an exact Kirchhoff rod model. Continuum Mechanics and Thermodynamics, 27, 861–877.
  • Greco, L., & Cuomo, M. (2016). An isogeometric implicit G1 mixed finite element for Kirchhoff space rods. Computer Methods in Applied Mechanics and Engineering, 298, 325–349.
  • Greco, L., Impollonia, N., & Cuomo, M. (2014). A procedure for the static analysis of cable structures following elastic catenary theory. International Journal of Solids and Structures, 51, 1521–1533.
  • Hamzaoui, F., Taillandier, F., Mehdizadeh, R., Breysse, D., & Allal, A. (2015). Evolutive risk breakdown structure for managing construction project risks: Application to a railway project in Algeria. European Journal of Environmental and Civil Engineering, 19, 238–262.
  • Hobbs, A. E. W., Illingworth, R., & Peters, A. J. (1977). New developments in understanding the dynamics of overhead current collection equipment for electric railways. Closed Loop, 1, 3–9.
  • Levy, S., Bain, J. A., & Leclerc, E. J. (1968). Railway overhead contact systems, catenary-pantograph dynamics for power collection at high speeds. ASME Journal of Manufacturing Science and Engineering, 90, 692–699.
  • Lopez-Garcia, O., Carnicero, A., & Torres, V. (2006). Computation of the initial equilibrium of railway overheads based on the catenary equation. Engineering Structures, 28, 1387–1394.
  • Madeo, A., Della Corte, A., Greco, L., & Neff, P. (2015). Wave propagation in pantographic 2D lattices with internal discontinuities. Proceedings of the Estonian Academy of Sciences, 64, 325–330.
  • Manabe, K., & Fujii, Y. (1990). Resonanzen des Oberleitungs-systems bei Verwendung von mehreren Stromabnehmern sowie Gegenmaßnahmen [Resonances of overhead conact system by use of several pantographs as a countermeasure against such phenomena]. Elektrische Bahnen, 88, 403–409.
  • Metrikine, A. V., Wolfert, A. R. M., & Vrouwenvelder, A. C. W. M. (1999). Steady-state response of periodically supported structures to a moving load. Heron, 44, 91–107.
  • Nibler, H. (1950). Dynamisches Verhalten von Fahrleitung und Stromabnehmer bei elektrischen Hauptbahnen [Dynamic behavior of contact wire and pantograph in principal electric railways]. Elektrische Bahnen, 21, 234–241.
  • Oda, O., Morikawa, T., & Kusumi, S. (1986). Reduction method of contact losses of overhead-catenary and pantograph system. Railway Technical Research Institute, Quarterly Reports, 27, 115–120.
  • Park, T.-J., Han, C.-S., & Jang, J.-H. (2003). Dynamic sensitivity analysis for the pantograph of a high-speed rail vehicle. Journal of Sound and Vibration, 266, 235–260.
  • Piccardo, G., Pagnini, L. C., & Tubino, F. (2015). Some research perspectives in galloping phenomena: Critical conditions and post-critical behavior. Continuum Mechanics and Thermodynamics, 27, 261–285.
  • Piccardo, G., Tubino, F., & Luongo, A. (2016). Equivalent nonlinear beam model for the 3-D analysis of shear-type buildings: Application to aeroelastic instability. International Journal of Non-Linear Mechanics, 80, 52–65.
  • Pignataro, M., Rizzi, N., Ruta, G., & Varano, V. (2009). The effects of warping constraints on the buckling of thin-walled structures. Journal of Mechanics of Materials and Structures, 4, 1711–1727.
  • Pignataro, M., Ruta, G., Rizzi, N., & Varano, V. (2010). Effects of warping constraints and lateral restraint on the buckling of thin-walled frames. ASME International Mechanical Engineering Congress and Exposition, Proceedings, 10, 803–810.
  • Poetsch, G., Evans, J., Meisinger, R., Kortüm, W., Baldauf, W., Veitl, A., & Wallaschek, J. (1997). Pantograph/catenary dynamics and control. Vehicle System Dynamics, 28, 159–195.
  • Reinbold, M., & Deckart, U. (1996). FAMOS: Ein Programm zur Simulation von Oberleitungen und Stromabnehmern [FAMOS: A computer program for the simulation of overhead wires and pantographs]. ZEV DET Glasers Annalen Die Eisenbahntechnik, 120, 239–243.
  • Renger, A. (1990). Berechnung des dynamischen Verhaltens von Oberleitungs-kettenwerk und Stromabnehmer [Computation of dynamic behavior of overhead catenary and pantograph]. VDI Berichte, 820, 141–154.
  • Resch, U. (1991). Simulation des dynamischen Verhaltens von Oberleitungen und Stromabnehmern bei hohen Geschwindigkeiten [Simulation of the dynamic behavior of overhead wire and pantographs in high-speed conditions]. Elektrische Bahnen, 89, 445–446.
  • Rizzi, N. L., & Varano, V. (2011a). The effects of warping on the postbuckling behaviour of thin-walled structures. Thin-Walled Structures, 49, 1091–1097.
  • Rizzi, N.L., & Varano, V. (2011b). On the postbuckling analysis of thin-walled frames. In Proceedings of the 13th International Conference on Civil, Structural and Environmental Engineering Computing (pp. 1–14), 6--9 September, Chania, Crete, Greece.
  • Rizzi, N. L., Varano, V., & Gabriele, S. (2013). Initial postbuckling behavior of thin-walled frames under mode interaction. Thin-Walled Structures, 68, 124–134.
  • Rosi, G., Giorgio, I., & Eremeyev, V. A. (2013). Propagation of linear compression waves through plane interfacial layers and mass adsorption in second gradient fluids. Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik, 93, 914–927.
  • Rosi, G., Pouget, J., & dell’Isola, F. (2010). Control of sound radiation and transmission by a piezoelectric plate with an optimized resistive electrode. European Journal of Mechanics -- A/Solids, 29, 859–870.
  • Ruta, G. C., Varano, V., Pignataro, M., & Rizzi, N. L. (2008). A beam model for the flexural-torsional buckling of thin-walled members with some applications. Thin-Walled Structures, 46, 816–822.
  • Scerrato, D., Zhurba Eremeeva, I. A., Lekszycki, T., & Rizzi, N. L. (2016). On the effect of shear stiffness on the plane deformation of linear second gradient pantographic sheets. Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik. doi:10.1002/zamm.201600066
  • Scott, P. R., & Rothman, M. (1974). Computer evaluation of overhead equipment for electric railroad traction. IEEE Transactions on Industry Applications. IA-10, 573–580.
  • Seo, J.-H., Kim, S.-W., Jung, I.-H., Park, T.-W., Mok, J.-Y., Kim, Y.-G., & Chai, J.-B. (2006). Dynamic analysis of a pantograph-catenary system using absolute nodal coordinates. Vehicle System Dynamics, 44, 615–630.
  • Stochino, F. (2016). RC beams under blast load: Reliability and sensitivity analysis. Engineering Failure Analysis, 66, 544–565.
  • Such, M., Jimenez-Octavio, J. R., Carnicero, A., & Lopez-Garcia, O. (2009). An approach based on the catenary equation to deal with static analysis of three dimensional cable structures. Engineering Structures, 31, 2162–2170.
  • Veylon, G., & Gual, J. (2003). Vibrations d’un hauban soumis á un vent turbulent [Vibrations of a wire subjected to a turbolent wind]. Revue Française de Génie Civil, 7, 195–220.
  • Wang, C. Y., & Wang, C. M. (2013). Structural vibration: Exact solutions for strings, membranes, beams, and plates. Boca Raton: CRC Press.
  • Wang, H. I., & Qin, S.-F. (2016). Shape finding of suspension bridges with interacting matrix. European Journal of Environmental and Civil Engineering, 20, 831–840.
  • Wu, T. X., & Brennan, M. J. (1998). Basic analytical study of pantograph-catenary system dynamics. Vehicle System Dynamics, 30, 443–456.
  • Wu, T. X., & Brennan, M. J. (1999). Dynamic stiffness of a railway overhead wire system and its effect on pantograph-catenary system dynamics. Journal of Sound and Vibration, 219, 483–502.
  • Zulli, D., & Luongo, A. (2012). Bifurcation and stability of a two-tower system under wind-induced parametric, external and self-excitation. Journal of Sound and Vibration, 331, 365–383.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.