337
Views
10
CrossRef citations to date
0
Altmetric
Original Articles

Effect of fineness of palm oil fuel ash on compressive strength and microstructure of alkaline activated mortar

, &
Pages 136-152 | Received 12 Jun 2016, Accepted 06 Dec 2016, Published online: 02 Jan 2017

References

  • Ahmari, S., Ren, X., Toufigh, V., & Zhang, L. (2012). Production of geopolymeric binder from blended waste concrete powder and fly ash. Construction and Building Materials, 35, 718–729.10.1016/j.conbuildmat.2012.04.044
  • Ariffin, M. A. M., Bhutta, M. A. R., Hussin, M. W., Mohd Tahir, M., & Aziah, N. (2013). Sulfuric acid resistance of blended ash geopolymer concrete. Construction and Building Materials, 43, 80–86. doi:10.1016/j.conbuildmat.2013.01.018
  • Bakharev, T. (2005). Durability of geopolymer materials in sodium and magnesium sulfate solutions. Cement and Concrete Research, 35, 1233–1246.10.1016/j.cemconres.2004.09.002
  • Bernal, S. A., Rodríguez, E. D., Mejia de Gutiérrez, R. M., Provis, J. L., & Delvasto, S. (2012). Activation of metakaolin/slag blends using alkaline solutions based on chemically modified silica fume and rice husk ash. Waste and Biomass Valorization, 3, 99–108.10.1007/s12649-011-9093-3
  • Boonserm, K., Sata, V., Pimraksa, K., & Chindaprasirt, P. (2012). Improved geopolymerization of bottom ash by incorporating fly ash and using waste gypsum as additive. Cement and Concrete Composites, 34, 819–824.10.1016/j.cemconcomp.2012.04.001
  • C109/C109M, A. (1999). Standard test method for compressive strength of hydraulic cement Mortars (Using 2-in. or [50-mm] Cube Specimens). West Conshohocken, PA: ASTM International.
  • C618-12a, A. (2012). Standard specification for coal ash and raw or calcined natural pozzolan for use in concrete. West Conshohocken, PA: ASTM International.
  • Chandara, C., Azizli, K. A., Ahmad, Z. A., Hashim, S. F. S., & Sakai, E. (2011). Analysis of mineralogical component of palm oil fuel ash with or without unburned carbon. Advanced Materials Research, 173, 7–11.
  • Cheah, C. B., & Ramli, M. (2012). Mechanical strength, durability and drying shrinkage of structural mortar containing HCWA as partial replacement of cement. Construction and Building Materials, 30, 320–329. doi:10.1016/j.conbuildmat.2011.12.009
  • Cheah, C. B., & Ramli, M. (2014). The fluid transport properties of HCWA–DSF hybrid supplementary binder mortar. Composites Part B: Engineering, 56, 681–690. doi:10.1016/j.compositesb.2013.09.021
  • Chindaprasirt, P., Chareerat, T., & Sirivivatnanon, V. (2007). Workability and strength of coarse high calcium fly ash geopolymer. Cement and Concrete Composites, 29, 224–229.10.1016/j.cemconcomp.2006.11.002
  • Chindaprasirt, P., Rukzon, S., & Sirivivatnanon, V. (2008). Effect of carbon dioxide on chloride penetration and chloride ion diffusion coefficient of blended Portland cement mortar. Construction and Building Materials, 22, 1701–1707.10.1016/j.conbuildmat.2007.06.002
  • Criado, M., Palomo, A., & FernandezJimenez, A. (2005). Alkali activation of fly ashes. Part 1: Effect of curing conditions on the carbonation of the reaction products. Fuel, 84, 2048–2054.10.1016/j.fuel.2005.03.030
  • Damtoft, J. S., Lukasik, J., Herfort, D., Sorrentino, D., & Gartner, E. M. (2008). Sustainable development and climate change initiatives. Cement and Concrete Research, 38, 115–127. doi:10.1016/j.cemconres.2007.09.008
  • Davidovits, J. (1994a). Global warming impact on the cement and aggregates industries. World Resource Review, 6, 263–278.
  • Davidovits, J. (1994b). Properties of geopolymer cements. Paper Presented at the First International Conference on Alkaline and Concrete Scientific Research Institute on Binders and Materials, Kiev State Technical University, Kiev, Ukraine, 131–149.
  • Görhan, G., & Kürklü, G. (2014). The influence of the NaOH solution on the properties of the fly ash-based geopolymer mortar cured at different temperatures. Composites Part B: Engineering, 58, 371–377.10.1016/j.compositesb.2013.10.082
  • He, J., Jie, Y., Zhang, J., Yu, Y., & Zhang, G. (2013). Synthesis and characterization of red mud and rice husk ash-based geopolymer composites. Cement and Concrete Composites, 37, 108–118. doi:10.1016/j.cemconcomp.2012.11.010
  • Joseph, B., & Mathew, G. (2012). Influence of aggregate content on the behavior of fly ash based geopolymer concrete. Scientia Iranica, 19, 1188–1194. doi:10.1016/j.scient.2012.07.006
  • Khankhaje, E., Hussin, M. W., Mirza, J., Rafieizonooz, M., Salim, M. R., Siong, H. C., & Warid, M. N. M. (2016). On blended cement and geopolymer concretes containing palm oil fuel ash. Materials & Design, 89, 385–398.10.1016/j.matdes.2015.09.140
  • Kumar, S., Kumar, R., & Mehrotra, S. (2010). Influence of granulated blast furnace slag on the reaction, structure and properties of fly ash based geopolymer. Journal of Materials Science, 45, 607–615.10.1007/s10853-009-3934-5
  • Kupwade-Patil, K., & Allouche, E. (2011). Effect of alkali silica reaction (ASR) in geopolymer concrete. Paper Presented at the World of Coal Ash (WOCA) conference, Denver, CO.
  • Megat Johari, M. A., Zeyad, A. M., Muhamad Bunnori, N., & Ariffin, K. S. (2012). Engineering and transport properties of high-strength green concrete containing high volume of ultrafine palm oil fuel ash. Construction and Building Materials, 30, 281–288. doi:10.1016/j.conbuildmat.2011.12.007
  • Mijarsh, M., Megat Johari, M. M., & Ahmad, Z. (2014). Synthesis of geopolymer from large amounts of treated palm oil fuel ash: Application of the Taguchi method in investigating the main parameters affecting compressive strength. Construction and Building Materials, 52, 473–481.10.1016/j.conbuildmat.2013.11.039
  • Mijarsh, M., Megat Johari, M. M., & Ahmad, Z. A. (2015a). Compressive strength of treated palm oil fuel ash based geopolymer mortar containing calcium hydroxide, aluminum hydroxide and silica fume as mineral additives. Cement and Concrete Composites, 60, 65–81.10.1016/j.cemconcomp.2015.02.007
  • Mijarsh, M., Megat Johari, M. M., & Ahmad, Z. A. (2015b). Effect of delay time and Na2SiO3 concentrations on compressive strength development of geopolymer mortar synthesized from TPOFA. Construction and Building Materials, 86, 64–74.10.1016/j.conbuildmat.2015.03.078
  • Mukherjee, I., & Sovacool, B. K. (2014). Palm oil-based biofuels and sustainability in southeast Asia: A review of Indonesia, Malaysia, and Thailand. Renewable and Sustainable Energy Reviews, 37, 1–12.10.1016/j.rser.2014.05.001
  • Nazari, A., Bagheri, A., & Riahi, S. (2011). Properties of geopolymer with seeded fly ash and rice husk bark ash. Materials Science and Engineering: A, 528, 7395–7401. doi:10.1016/j.msea.2011.06.027
  • Panias, D., Giannopoulou, I. P., & Perraki, T. (2007). Effect of synthesis parameters on the mechanical properties of fly ash-based geopolymers. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 301, 246–254.10.1016/j.colsurfa.2006.12.064
  • Ranjbar, N., Mehrali, M., Behnia, A., Alengaram, U. J., & Jumaat, M. Z. (2014). Compressive strength and microstructural analysis of fly ash/palm oil fuel ash based geopolymer mortar. Materials & Design, 59, 532–539. doi:10.1016/j.matdes.2014.03.037
  • Salih, M. A., Abang Ali, A. A. A., & Farzadnia, N. (2014). Characterization of mechanical and microstructural properties of palm oil fuel ash geopolymer cement paste. Construction and Building Materials, 65, 592–603.10.1016/j.conbuildmat.2014.05.031
  • Sata, V., Jaturapitakkul, C., & Kiattikomol, K. (2004). Utilization of palm oil fuel ash in high-strength concrete. Journal of Materials in Civil Engineering, 16, 623–628.10.1061/(ASCE)0899-1561(2004)16:6(623)
  • Schneider, M., Romer, M., Tschudin, M., & Bolio, H. (2011). Sustainable cement production – Present and future. Cement and Concrete Research, 41, 642–650. doi:10.1016/j.cemconres.2011.03.019
  • Silva, P. D., Sagoe-Crenstil, K., & Sirivivatnanon, V. (2007). Kinetics of geopolymerization: Role of Al2O3 and SiO2. Cement and Concrete Research, 37, 512–518. doi:10.1016/j.cemconres.2007.01.003
  • Tangchirapat, W., Jaturapitakkul, C., & Kiattikomol, K. (2009). Compressive strength and expansion of blended cement mortar containing palm oil fuel ash. Journal of Materials in Civil Engineering, 21(8), 426–431.
  • Tangchirapat, W., Saeting, T., Jaturapitakkul, C., Kiattikomol, K., & Siripanichgorn, A. (2007). Use of waste ash from palm oil industry in concrete. Waste Management, 27, 81–88.10.1016/j.wasman.2005.12.014
  • Tangchirapat, W., Jaturapitakkul, C., & Chindaprasirt, P. (2009). Use of palm oil fuel ash as a supplementary cementitious material for producing high-strength concrete. Construction and Building Materials, 23, 2641–2646.
  • Temuujin, J., van Riessen, A., & MacKenzie, K. (2010). Preparation and characterisation of fly ash based geopolymer mortars. Construction and Building Materials, 24, 1906–1910.10.1016/j.conbuildmat.2010.04.012
  • Varkkey, H. (2012). The growth and prospects for the oil palm plantation industry in Indonesia. Oil palm industry economic journal, 12(2), 1–13.
  • Wallah, S., & Rangan, B. V. (2006). Low-calcium fly ash-based geopolymer concrete: Long-term properties. Res. Report-GC2 (pp. 76–80). Perth: Curtin University of Technology.
  • Yunsheng, Z., Wei, S., & Zongjin, L. (2007). Preparation and microstructure of K-PSDS geopolymeric binder. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 302, 473–482.10.1016/j.colsurfa.2007.03.031
  • Yusuf, M. O., Megat Johari, M. A., Ahmad, Z. A., & Maslehuddin, M. (2014a). Evolution of alkaline activated ground blast furnace slag–ultrafine palm oil fuel ash based concrete. Materials & Design, 55, 387–393.10.1016/j.matdes.2013.09.047
  • Yusuf, M. O., Megat Johari, M. A., Ahmad, Z. A., & Maslehuddin, M. (2014b). Performance of different grades of palm oil fuel ash with ground slag as base materials in the synthesis of alkaline activated mortar. Journal of Advanced Concrete Technology, 12, 378–387.10.3151/jact.12.378
  • Yusuf, M. O., Megat Johari, M. A., Ahmad, Z. A., & Maslehuddin, M. (2014c). Shrinkage and strength of alkaline activated ground steel slag/ultrafine palm oil fuel ash pastes and mortars. Materials & Design, 63, 710–718. doi:10.1016/j.matdes.2014.06.062
  • Yusuf, M. O., Megat Johari, M. A. M., Ahmad, Z. A., & Maslehuddin, M. (2015). Impacts of silica modulus on the early strength of alkaline activated ground slag/ultrafine palm oil fuel ash based concrete. Materials and Structures, 48, 733–741.10.1617/s11527-014-0318-3

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.