273
Views
14
CrossRef citations to date
0
Altmetric
Original Articles

Production of high-strength lightweight concrete using waste lightweight oil-palm-boiler-clinker and limestone powder

, ORCID Icon &
Pages 325-344 | Received 10 May 2016, Accepted 23 Dec 2016, Published online: 19 Jan 2017

References

  • ACI (American Concrete Institute) . (1997). State-of-the-art report on high-strength concrete (ACI 363R-92 ACI Committee 363 Report). Detroit.
  • Ahmad, M. H. , Mohd, S. , & Noor, N. M. (2007, December 27–28). Mechanical properties of palm oil clinker concrete. In Proceedings of EnCon2007 1st Engineering Conference on Energy & Environment . Kuching
  • Aitcin, P. C. , Haddad, G. , & Morin, R. (2004). Controlling plastic and autogenous shrinkage in high-performance concrete. ACI Specifications Publications , 220 , 69–83.
  • Aslam, M. , Shafigh, P. , & Jumaat, M. Z. (2016). Oil-palm by-products as lightweight aggregate in concrete mixture: A review. Journal of Cleaner Production , 126 , 56–73.10.1016/j.jclepro.2016.03.100
  • ASTM C330-89 . (2005). Standard specification for lightweight aggregates for structural concrete . West Conshohocken, PA: Annual Book of ASTM Standards.
  • Bentz, D. P. , Lura, P. , Roberts, J. W. (2005). Mixture proportioning for internal curing. ACI Concrete International, 27 , 35e40.
  • BS 1881: Part 116 . (1983). Testing concrete. Method for determination of compressive strength of concrete cubes . London:   British Standards Institution.
  • BS 1881: Part 117 . (1983). Testing concrete. Method for determination of tensile splitting strength . London: British Standards Institution.
  • BS 1881: Part 121 . (1983). Test concrete. Method for determination of static modulus of elasticity in compression . London:  British Standards Institution.
  • BS 8110: Part 2 . (1985). Structural use of concrete. Part 2: Code of practice for special circumstances . London: British Standards Institution.
  • BSI Document 92/17688 . (1992). European draft standard specification for lightweight aggregates, CEN/TC154/SC5 . London: Sub Committee Lightweight Aggregates.
  • Caldarone, M. A. (2009). High-strength concrete – A practical guide . London: Taylor & Francis Group.
  • CEB/FIP . (1977). Manual of design and technology, lightweight aggregate concrete (First pub.). Lancaster: The Construction Press.
  • CEB-FIP . (1989). Diagnosis and assessment of concrete structures – ‘‘state of the art report’’. CEB Bull , 192 , 83–85.
  • Chen, B. , & Liu, J. (2008). Experimental application of mineral admixtures in lightweight concrete with high strength and workability. Construction and Building Materials , 22 , 1108–1113.10.1016/j.conbuildmat.2007.03.001
  • Clarke, J. L. (1993). Structural lightweight aggregate concrete . London: Blackie Academic and Professional.
  • Committee Euro-International du Beton (CEB-PIP) . (1993). CEB-PIP model code 1990 . London: Thomas Telford.
  • Concrete Center . (2016). [Online]. Retrieved September 07, 2016, from http://www.concretecentre.com/Performance-Sustainability-(1)/Special-Concrete/high-strength-concrete.aspx
  • Cui, H. Z. , Lo, T. Y. , Memon, S. A. , Xing, F. , & Shi, X. (2012). Experimental investigation and development of analytical model for pre-peak stress–strain curve of structural lightweight aggregate concrete. Construction and Building Materials , 36 , 845–859.10.1016/j.conbuildmat.2012.06.041
  • Dilli, M. E. , Atahan, H. N. , & Şengül, C. (2015). A comparison of strength and elastic properties between conventional and lightweight structural concretes designed with expanded clay aggregates. Construction and Building Materials , 101 , 260–267.10.1016/j.conbuildmat.2015.10.080
  • Fujji, K. , Adachi, S. , Takeuchi, M. T. , Kakizaki, M. , Edahiro, H. , & lnoue, T. (1998). Properties of high-strength and high-fluidity lightweight concrete. ACI Specifications Publication , 179 , 65–84.
  • Haque, M. N. (1990). Some concretes need 7 days initial curing. ACI Concrete Institute , 12 , 42–46.
  • Hoff, G. C. (2002). Guide for the use of low-density concrete in civil works projects . Washington, DC: US Army Corps of Engineers, Engineer Research and Development Center.
  • Holm T. A. , & Bremner T. W. (2000). State of the art report on high strength, high durability structural low-density concrete for applications in severe marine environments . Washington, DC: US Army Corps of Engineers, Engineering Research and Development Center.
  • Holm, T. A. , Ooi, O. S. , & Bremner, T. W. (2003). Moisture dynamics in lightweight aggregate and concrete. In J. P. Ries & T. A. Holm (Eds.), Proceedings of the 6th CANMET/ACI International Conference on Durability of Concrete , June 1–7, Thessaloniki, Greece, pp. 167–184.
  • Kanadasan, J. , & Razak, H. A. (2015). Engineering and sustainability performance of self-compacting palm oil mill incinerated waste concrete. Journal of Cleaner Production , 89 , 78–86.10.1016/j.jclepro.2014.11.002
  • Kayali, O. (2008). Fly ash lightweight aggregates in high performance concrete. Construction and Building Materials , 22 , 2393–2399.10.1016/j.conbuildmat.2007.09.001
  • Kockal, N. U. , & Ozturan, T. (2011). Strength and elastic properties of structural lightweight concretes. Materials & Design , 32 , 2396–2403.10.1016/j.matdes.2010.12.053
  • Kosmatka, S. H. , & Wilson, M. L. (2011). Design and control of concrete mixtures, EB001 (15th ed.). Skokie, IL: Portland Cement Association.
  • Kucharczyková, B. , Keršner, Z. , Pospíchal, O. , Misák, P. , Daněk, P. , & Schmid, P. (2012). The porous aggregate pre-soaking in relation to the freeze–thaw resistance of lightweight aggregate concrete. Construction and Building Materials , 30 , 761–766.10.1016/j.conbuildmat.2011.12.067
  • Lo, T. Y. , Cui, H. Z. , & Li, Z. G. (2004). Influence of aggregate pre-wetting and fly ash on mechanical properties of lightweight concrete. Waste Management , 24 , 333–338.10.1016/j.wasman.2003.06.003
  • Lo, T. Y. , Cui, H. Z. , Memon, S. A. , & Noguchi, T. (2016). Manufacturing of sintered lightweight aggregate using high-carbon fly ash and its effect on the mechanical properties and microstructure of concrete. Journal of Cleaner Production , 112 , 753–762.10.1016/j.jclepro.2015.07.001
  • Malešev, M. , Radonjanin, V. , Lukić, I. , Bulatović, V. (2014). The effect of aggregate, type and quantity of cement on modulus of elasticity of lightweight aggregate concrete. Arabian Journal for Science and Engineering , 39 , 705–711.10.1007/s13369-013-0702-2
  • Mannan, M. A. , & Neglo, K. (2010). Mix design for oil-palm-boiler clinker (OPBC) concrete. Journal of Science and Technology , 30 , 111–118.
  • Mehta, P. K. , & Monteiro, P. J. M. (2006). Concrete: Microstructure, properties and materials (3rd ed.). New York, NY : McGraw-Hill.
  • Mindess, D. , Young, J. F. , & Darwin, D. (2003). Concrete (2nd ed.). Upper Saddle River, NJ: Prentice Hall / Pearson Education.
  • Mo, K. H. , Johnson, A. U. , Jumaat, M. Z. , Liu, M. Y. J. , & Lim, J. (2016). Assessing some durability properties of sustainable lightweight oil palm shell concrete incorporating slag and manufactured sand. Journal of Cleaner Production , 112 , 763–770.10.1016/j.jclepro.2015.06.122
  • Mohammed, B. S. , Foo, W. L. , & Abdullahi, M. (2014). Flexural strength of palm oil clinker concrete beams. Materials and Design , 53 , 325–331.10.1016/j.matdes.2013.07.041
  • National Ready Mix Concrete Association . (2001). High strength concrete [Online]. Retrieved June 17, 2015, from http://www.nrmca.org/aboutconcrete/cips/33p.pdf
  • Neville, A. M. (1971). Hardened concrete: Physical and mechanical aspects (ACI Monograph No. 6). Detroit: American Concrete Institute, Iowa State University Press.
  • Neville, A. M. (2008). Properties of concrete (14th ed.). Malaysia: CTP-VVP.
  • Neville, A. M. , & Brooks, J. J. (2008). Concrete technology . Harlow: Pearson Education Limited, Edinburgh Gate.
  • Newman, J. B. (1993). Properties of structural lightweight aggregate concrete. In J. L. Clarke (Ed.), Structural lightweight aggregate concrete (pp. 20–33). Chapman Hall: Glasgow.
  • Novokshchenov, V. , & Whitcomb, W. (1990). How to obtain high-strength concrete using low density aggregate. ACI Special Publication , 121 , 683–700.
  • Omar, W. , & Mohamed, R. N. (2002). The performance of pretensioned prestressed concrete beams made with lightweight concrete. Journal of Civil Engineering, 14 , 60–70.
  • Paul, A. , & Lopez, M. (2011). Assessing lightweight aggregate efficiency for maximizing internal cure performance. ACI Materials Journal , 108 , 385–393.
  • Rossignolo, J. A. , & Agnesini, M. V. C. (2003). Properties of high performance LWAC for precast structures with Brazilian lightweight aggregates. Cement and Concrete Composites , 25 , 77–82.10.1016/S0958-9465(01)00046-4
  • Sajedi, F. , & Shafigh, P. (2012). High-strength lightweight concrete using leca, silica fume, and limestone. Arabian Journal for Science and Engineering , 37 , 1885–1893.10.1007/s13369-012-0285-3
  • Shafigh, P. , Jumaat, M. Z. , & Mahmud, H. B. (2011a). Oil palm shell as a lightweight aggregate for production high strength lightweight concrete. Construction and Building Materials , 25 , 1848–1853.10.1016/j.conbuildmat.2010.11.075
  • Shafigh, P. , Jumaat, M. Z. , Mahmud, H. B. , & Alengaram, U. J. (2011). A new method of producing high strength oil palm shell lightweight concrete. Materials and Design , 32 , 4839–4843.10.1016/j.matdes.2011.06.015
  • Shafigh, P. , Mahmud, H. , & Jumaat, M. Z. (2012). Oil palm shell lightweight concrete as a ductile material. Materials & Design (1980–2015) , 36 , 650–654.10.1016/j.matdes.2011.12.003
  • Shannag, M. J. (2000). High strength concrete containing natural pozzolan and silica fume. Cement Concrete Composites , 22 , 339–406.
  • Shannag, M. J. (2011). Characteristics of lightweight concrete containing mineral admixtures. Construction and Building Materials , 25 , 658–662.10.1016/j.conbuildmat.2010.07.025
  • Short, A. , & Kinniburgh, W. (1978). Lightweight concrete (3rd ed.). London: Applied Science Publication.
  • Slate, F. O. , Nilson, A. H. , & Martinez, S. (1986). Mechanical properties of high strength lightweight concrete. ACI Journal Proceedings , 83 , 606–613.
  • Sylva, G. , Breen, J. , & Burns, N. (2002). Feasibility of utilizing high-performance lightweight concrete in pretensioned bridge girders and panels (Research report 1852-2). Austin: Center for Transportation Research Bureau of Engineering Research of the University of Texas at Austin.
  • Tasnimi, A. A. (2004). Mathematical model for complete stress–strain curve prediction of normal, light-weight and high-strength concretes. Magazine of Concrete Research , 56 , 23–34.10.1680/macr.2004.56.1.23
  • Weerdt, K. D. , Haha, M. B. , Saout, G. L. , Kjellsen, K. O. , Justnes, H. , & Lothenbach, B. (2011). Hydration mechanisms of ternary Portland cements containing limestone powder and fly ash. Cement and Concrete Research , 4 , 279–291.10.1016/j.cemconres.2010.11.014
  • Youm, K. S. , Kim, J. J. , & Moon, J. (2014). Punching shear failure of slab with lightweight aggregate concrete (LWAC) and low reinforcement ratio. Construction and Building Materials , 65 , 92–102.10.1016/j.conbuildmat.2014.04.097
  • Zakaria, M. L. , 1986. Strength properties of oil palm clinker concrete. Jurnal Teknologi UTM, 8 , 28e37.
  • Zhang, M. H. , & GjorvI, O. E. (1990). Development of high-strength lightweight concrete. ACI Specifications Publication , 121 , 667–682.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.